Towards leveraging collective performance with the support of MPI 4.0 features in MPC

Stephane Bouhrour?®, Thibaut Pepin®, Julien Jaeger®®*

“Exascale Computing Research Laboratory, 2 rue de la piquetterie, Bruyéres-le-chdtel, 91680, France
PCEA, DAM, DIF, Arpajon, F-91297, France
¢ Université Paris-Saclay, CEA, Laboratoire en Informatique Haute Performance pour le Calcul et la simulation, Bruyéres-le-chatel, 91680, France

Abstract

Persistent collective communications and communicator splitting according to the underlying hardware topology have recently been
voted in the MPI standard. Persistent semantics contains an initialization phase called only once for a specific collective operation,
with subsequent recurring invocations. This opens the door to many optimizations requiring heavy setup costs to improve collective
performances. Communicator topological splitting offers a standard way to design topological algorithm through the use of sub-
communicators mapped to hardware hierarchical levels. Setting these communicators might be too costly to be efficient on a
single collective call. However, the persistent semantics allow to create these communicators once at initialization, and use them
repeatedly in the multiple collective invocations to have an efficient algorithm.

In this paper, we describe the implementation of these two new MPI features in the MPC framework. We first present a naive and
an optimized version of persistent collectives without topology knowledge. Then, after detailing the implementation of hardware
topology splitting and the hierarchical levels supported in MPC, we showcase how these two features can be combined to produce
efficient topology-aware persistent collective implementations. Experimental results show that the topology-aware algorithms built

with these basic blocks offer good performances, independent of the MPI processes binding.

1. Introduction

To leverage the whole computing power of a supercomputer,
High-Performance Computing (HPC) applications run on nu-
merous compute nodes, inducing data exchange between the
compute workers on these nodes. To this aim, Message Passing
Interface (MPI) was introduced in 1994, and quickly became
the de-facto standard for internode communications.

The first version of the MPI standard already introduced the
concept of blocking, nonblocking and persistent point-to-point
operations [1]. The persistent semantics decouples the initial-
ization of the associated communication from its actual execu-
tion. A first procedure call initializes the operation. A second
call starts and a third call completes the operation. Before free-
ing the operation, and its associated structures, with a fourth
procedure call, it is possible to perform again the same oper-
ation multiple times with new calls to the set of starting and
completing procedures.

MPI-1 also provided the concept of collective communica-
tions. These communications involve a group of MPI pro-
cesses, which have to participate in a global communication
pattern (such as broadcasting a value from one MPI process to
all others, or reducing values located on each MPI process). In
MPI-1, only blocking collectives were introduced. Nonblock-
ing collectives were added much later in version 3.0 of the stan-
dard [2]. Because persistent communications may offer some

Email addresses: stephane.bouhrour@uvsq.fr (Stephane Bouhrour),
thibaut.pepin@cea.fr (Thibaut Pepin), julien. jaeger@cea.fr (Julien
Jaeger)

Preprint submitted to Elsevier

performance advantage over nonblocking ones, persistent col-
lectives have been studied for more than twenty years [3, 4],
eventually leading to its proposal and adoption into the latest
version 4.0 of the MPI standard.

Numerous collective implementation optimizations rely on
hardware topology awareness. Unfortunately, the MPI standard
did not originally provide mechanism to detect the hierarchical
topology of the hardware. Hence users wanting to design topo-
logical communication patterns have to rely on external tools,
such as Hwloc [5]. From this observation, new communicator
splitting values were proposed to be added in the newest MPI
standard. They allow to split a given communicator in sub-
communicators related to the underlying hardware hierarchy.

Building all hierarchical communicators can be cumber-
some, and this setup phase cost may be to high to be covered by
the performance gain of a unique collective execution. How-
ever, the main advantage of persistent communications when
compared to nonblocking communications is the possibility to
perform the same operation several times without having to ini-
tialize it each time. Thanks to this, it is then possible to take
more time in the initialization phase of the operation, e.g., to
generate a specific topological algorithm with newly created
hierarchical communicators, to find the best performing algo-
rithm. If the compute time of performing the operation is re-
duced, then performing the operation enough times will allow
hiding the initialization costs, and provide an overall speedup.

This paper is an extended version of a previous paper pub-
lished and presented at EuroMPI 2020 [6]. In the previous pa-
per, we focused on the lessons learned while implementing per-
sistent collectives in the MPC framework [7]. In this paper, we

October 28, 2021

recall the main implementation details of our persistent collec-
tives. We also add the description of our newly implemented
support for communicator topological splitting. Then, we de-
scribe how we generate topological communicators along with
conduits communicators, allowing to easily design topology-
aware algorithms. Thanks to this method, we create simple,
topology-aware algorithms for persistent broadcast, gather and
reduce, showing good and stable performances.

The paper is organized as follows. Section 2 presents the re-
lated work describing previous work on optimizing collectives,
especially through topology concerns. Section 3 describes the
persistent communications interface, before recalling the main
details of our persistent collective implementation in Section 4.
Some experimental results regarding the optimizations in this
implementation are also recalled in Section 5. Then, Section 6
describes the communicator topological splitting interface, be-
fore detailing our implementation of this feature inside MPC in
Section 7. We showcase how to build all necessary communi-
cators to easily design hierarchical algorithms in Section 8, and
design very simple algorithms using this feature in Section 9.
Section 10 presents experimental results with our topology-
aware persistent collectives compared to original algorithms in
MPC and OpenMPI, before concluding in Section 11.

2. Related Work

2.1. Topology awareness

Numerous work exists on the optimization of collective com-
munications, especially with a focus on hierarchical collective
patterns. Ruefenacht et al. [8] perform an extensive study on
the recursive doubling algorithm for the Allreduce communi-
cation pattern. Hsanov et al. [9] analyze different allreduce
communication algorithms, such as plain linear, ring, recursive
doubling and Rabenseifner’s algorithm based on reduce-scatter
and allgather communications. For the alltoall communication
pattern, Kang et al. [10] also develop a new communication al-
gorithm to benefit from the topological hierarchy and locality
to target optimal bandwidth. All these works, and numerous
others from the last decades [11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22], show the importance of considering the underneath
hardware topology to optimize the communications. Yet, the
MPI standard, up to version 3.1, did not directly provide an in-
terface to extract or the underlying hardware topology. Users
have to create their own software to pin MPI processes to spe-
cific resources, such as MPI-pin [23] or mpibind [24]. However,
the initial binding may not be enough, as the different commu-
nicators in a program may involve different set of resources,
hence requiring different bindings. A standard and generic way
should be provided to adapt any communication pattern to the
underlying topology. This drove the proposal and acceptance
of new additions improving the support for the hardware topol-
ogy in the version 4.0 of the MPI standard, lead by the work of
Goglin et al. [25].

2.1.1. Caching and persistence
Persistence and caching is a key concept to reduce over-
heads and increase performances. As an example, Hoefler

et al. [26] propose optimizations on neighborhood collectives
schedules through hints given by the user. They identify three
levels of persistent information: persistent topology, persis-
tent message sizes and persistent buffer accesses. Through the
user hints, they use this knowledge to improve the neighbor-
hood collective performances. On the same general idea, Triff
et al. [27] tackle repetitive isomorphic sparse neighborhood
collectives. Message-combining communication schedule and
MPI datatypes used in their isomorphic communications can
be cached to avoid creation costs. They implement their own
isomorphic sparse neighborhood persistent collective, creating
the cached structure in the initialization phase, allowing them
to implement zero-copy alltoall and allgather operations.
Another work using MPI datatypes capabilities to implement
a zero-copy all-to-all [28] also presents the benefit of such ap-
proach in a persistent collective scheme. A very recent work
aiming to provide a more generic and efficient cartesian col-
lective feature for MPI [29] already designed its algorithms in
anticipation of a persistent interface.

Optimization of persistent collectives could already be found
before their adoption in the MPI standard. Hori et al. [30] op-
timize the use of RDMA engines on the K computer with ap-
plications implementing redundant neighborhood communica-
tion involving ghost sharing regions. They compute an optimal
schedule of communication requests onto multiple RDMA en-
gines for those persistent communications to enhance their la-
tencies and avoid resource contentions as much as possible. In
a more recent work, Hatanaka et al. [31] implement persistent
communications with the MPI generalized request interface.
They expose their results on a neigborhood_alltoallw us-
ing their interface on the FX100 system at RIKEN AICS. While
the performance improvements of these implementations are
impressive, they are based on a specific underlying hardware.
Such optimization is hard to directly integrate into another MPI
implementation. However, specializing our persistent collective
implementation to benefit from the underlying network capabil-
ity may help to improve the performances.

Getting the hardware topology information can be time and
resource consuming. The performance gain provided by a topo-
logical algorithm should absorb the extra-time used for retriev-
ing the topology knowledge. Persistent communications are de-
signed to be called several time in a program life-time, with
only one initialization call. Hence, they are perfect candidates
to design and embed topological algorithms.

In this paper, we show that persistent initialization calls can
be used to gather and cache the hardware knowledge. Using the
future MPI communicator splitting interface, the hierarchy of
communicators and communication pattern can be build for the
input communicator of the persistent collectives. The method-
ology to design the hierarchy of communicators, and to eas-
ily build topological algorithm, can be used to implement the
topology optimizations of numerous related work in a more
generic way using a standardized interface. We showcase this
with an implementation of both features in the MPC Frame-
work.

2.1.2. MPC Framework

The MPC framework is a unified parallel runtime for pro-
gramming clusters of NUMA machines. MPC provides both its
own MPI implementation and OpenMP implementation, on top
of a unified user-level thread scheduler. Thanks to its tight cou-
pling with threading models, MPC-MPI offers both a thread-
based and a process-based execution scheme, which can be se-
lected at runtime [7]. This tight coupling also allows better han-
dling of inner progression threads. The nonblocking procedures
implemented in MPC come from the 1ibNBC [32], which has
been adapted to use MPC user-level threads as progress threads.

Having a coherent distribution of MPI processes and
OpenMP threads in hybrid programs requires some knowledge
about the node hardware topology. MPC relies on Hwloc [5]
to gather node topology information, and build its own inter-
nal topology structure used for both worker placement and data
locality [33].

Thanks to its nonblocking collectives implementation based
on a well-known library and its inherent topology awareness,
MPC is a good candidate to implement both persistent collec-
tives and communicator topology splitting.

3. Persistent collective interface

A persistent collective operation, as a persistent point-to-
point operation, follows the persistent operation semantics.
The persistent semantics augments the nonblocking semantics,
which needs at least two procedure calls, with two other re-
quired procedure calls.

In the case of a nonblocking operation, a first procedure, pre-
fixed with MPI_I, initializes the operation, and may return be-
fore the operation is completed (or even started). The initializa-
tion procedure fills in an MPI_Request object used to identify
the associated operation. Once the initialization call is done,
the operation can be performed at any time by the MPI run-
time. To complete the operation, at least one subsequent call
to a completion procedure (MPI_Wait, MPI_Test,...) is neces-
sary, using the MPI_Request object to identify the operation to
finish. Once the operation is done, the MPI_Request object is
emptied, and can be reused. A usage example of a nonblock-
ing operation inside a for loop is shown in Listing 1, with both
initialization and completion procedures having to be invoked
inside the loop.

For a persistent operation, at least four MPI procedures are
required to perform and complete the operation.

e The first procedure, with the form MPI_<Coll>_init
(e.g., MPI_Bcast_init), initializes the operation, and fill
the provided MPI_Request object. The input arguments
are bound to the MPI_Request object and will never
change until the request is freed. On the return of the call,
the operation cannot start yet.

e A second procedure, MPI_Start, starts the persistent op-
eration, i.e., it informs the MPI runtime that the operation
can be performed. The MPI_Request object is then used
for the MPI_Start procedure to know which operation can
be started and with which parameters.

e As with nonblocking, a completion call is necessary to
complete the operation, such as MPI_Wait, MPI_Test or
their all/some/any derivatives. Contrary to nonblocking
operations, the MPI_Request for a persistent communi-
cation is not freed after completion. The MPI_Request
object still contains all information relative to its persis-
tent communication, and it is only marked as inactive.
As such, the operation identified by the MPI_Request
object can be performed again, through another call
to the MPI_Start procedure followed by a completion
call. These new executions of the collective will be per-
formed with the exact same parameters, stored in the
MPI_Request object during the initialization call. It is
interesting to notice that, though the pointers to the in-
put and/or output buffers are the same, the content of the
buffers are permitted to change between two operation ex-
ecutions (hence after a completion call and before the next
call of the starting procedure).

e Once the user is sure to never perform the same op-
eration again, a call to MPI_Request_free empties the
MPI_Request object and finishes the persistent operation.
MPI_Request_free can only be called on an inactive per-
sistent collective request.

A usage example of a persistent operation inside a for loop
is shown in Listing 2. Note that this example shows the ideal
usage of a persistent operation. Since the operation can be
performed several times with only one initialization, only the
procedures needed to start and complete the operation are in-
voked in the loop. Contrary to the nonblocking case, the ini-
tialization procedure is called only once, before the loop. After
the loop ends, the freeing procedure is invoked, marking the
MPI_Request object as free and being usable for another oper-
ation.

4. Persistent collectives implementation

This section describes the implementation of persistent col-
lectives in the MPC framework. We first present a naive imple-
mentation directy based on nonblocking communication calls.
Then, we describe the caching optimizations that were per-
formed in our naive implementation to benefit from the persis-
tent semantics and increase the performances. The first caching
optimization consists in caching the schedule structure, as done
in the 1ibPNBC library [3]. The second optimization offers an-
other caching level targeting deeper internal structures. The de-
tails on the nonblocking collectives implementation in MPC,
and the internal sctructures that will be touched by these opti-
mizations, can be found in our EuroMPI 2020 paper [6], Section
3.2.

4.1. Naive implementation of persistent collectives

A first naive implementation of persistent collectives can be
done using nonblocking procedures.

The idea is simple: it consists in creating a MPI_Request
object, and give it to the MPI_<Coll>_init call, as imposed

© N U AW —

10
11
12
13
14

Listing 1: Nonblocking benchmark implementation

Listing 2: Persistent benchmark implementation

MPI_Request req_ptr
double wwtime = O0;
MPI_Barrier ();
START_TIMER (wwtime)

i<500;i++){
MPI_I<coll>(args_coll, &req_ptr);
MPI_Wait (&req_ptr, status);

for (i=0;

}

END_TIMER (wwtime)

double recup_max = 0;

MPI_Reduce (&wwtime, &recup_max, 1,
MPI_MAX,0, MPI_COMM_WORLD);

MPI_DOUBLE,

© N AW —

10
11
12
13
14

MPI_Request req_ptr

double wwtime = O0;

MPI_Barrier ();

START_TIMER (wwtime)

MPI_<Coll>_init (args_coll,

for (i=0; i<500;i++){
MPI_Start (&req_ptr);
MPI_Wait (&req_ptr, status);

&req_ptr);

}

MPI_Request_free (&req_ptr)

END_TIMER (wwtime)

double recup_max = 0;

MPI_Reduce (&wwtime, &recup_max, 1,
MPI_MAX,0, MPI_COMM_WORLD);

MPI_DOUBLE,

by the MPI standard. This request is tagged as persistent and
inactive, and gathers all other arguments passed down to the
persistent initialization call. In addition, the type of the collec-
tive operation, determined by the Coll part of the initialization
procedure name, also has to be stored.

The next calls to MPI_Start, or MPI_Startall, function
with the MPI_Request object are supposed to start the oper-
ation. In this naive implementation, the call retrieves the op-
eration type stored in the object. Once the collective opera-
tion type is retrieved and recognized, the corresponding non-
blocking operation is started by calling the appropriate proce-
dure (e.g., for a persistent initialized by MPI_<Col1>_init, the
procedure MPI_I<coll> is invoked at this step). All the argu-
ments passed to the persistent initialization call and stored in the
MPI_Request object are now directly given to the nonblock-
ing initialization call. A new MPI_Request object is created to
be passed to the nonblocking initialization procedure to repre-
sent the nonblocking operation. This new request is embedded
in the MPI_Request object representing the persistent opera-
tion. We then have two requests, a persistent request, which is
the MPI_Request object representing the persistent operation
and embedding a nonblocking request, the new MPI_Request
object representing the current nonblocking operation. Before
leaving this call, the persistent request is set to active.

Once the nonblocking operation is completed through the
call of a completion call (e.g., MPI_Wait, MPI_Test and their
derivatives), the nonblocking request is freed and can be reused.
However, the persistent request must not be destroyed since
it represents a persistent operation. It is simply set to be
inactive so a new operation can be started.

Such an implementation is functional and in accordance with
MPI-4 standard. Nevertheless, no benefit is made via the per-
sistent mechanism as, since nonblocking procedures and op-
erations are used, all internal structures needed to build the
nonblocking collective are created and initialized at each call,
hence each time a new operation is started.

4.2. Caching schedule optimization

The first caching optimization consists in shifting the build-
ing cost of the algorithm from the nonblocking collective ini-
tialization (performed in the MPI_Start call) to the persis-
tent initialization MPI_<Col1l>_init call. It is very similar to

the optimization performed in libPNBC [3]. This optimization
level will be referred as ’Schedule caching” in Section 5.

In our implementation, the nonblocking collective initializa-
tion function is separated into two functions: one function deal-
ing exclusively with the initialization part, which becomes the
persistent initialization function, and another internal function
used to start the operation and schedule all the point-to-point
operations required by the collective algorithm. The modifica-
tions are described in the following paragraphs.

Initialization. The call to MPT_<Coll>_init stores and refer-
ences all arguments of the collective inside an internal structure
of the MPC runtime. It then realizes all the initialization steps
of the corresponding nonblocking collective operation, includ-
ing the creation of the schedule structure depending on the col-
lective and its chosen algorithm.

Once this persistent initialization function is completed, the
application resumes and the MPI_Request object contains all
the information needed to execute the operation.

Starting. Subsequent calls to MPI_Start access all the re-
quired information referenced by the request object given in
argument and call the corresponding collective internal func-
tion created by the splitting of the nonblocking initialization
procedure.

The schedule is retrieved from the request. Then, the neces-
sary variables and internal structures are created and initialized
to the right values to track the progression of the algorithm. For
example, as MPC relies on pointer arithmetic to progress in the
schedule, the initial reading pointer is reset to the beginning of
the schedule.

Completion. Upon completion of the current persistent opera-
tion, all the internal structures built for the execution of the op-
eration are not released, contrary to the previous naive version
based on nonblocking operations. Keeping the internal struc-
tures allow saving the overhead of doing their initialization for
each operation.

Freeing. The MPI_Request object and all intermediate struc-
tures, including the schedule structure, are released upon free-
ing. As described in the MPI standard, only requests marked as
inactive should be released by a call to the MPI_Request_free
procedure.

4.3. Internal intermediate persistent requests optimization

This second caching level implements an optimization hinted
in Morgan et al. [3] when presenting the libPNBC library. In the
original version of libNBC, thus also in libPNBC, when parsing
the schedule structures, the nonblocking operations composing
the collective algorithm, and the associated rounds, are created.
Thus, each time a persistent operation is started, time is spent
to initialize the same recurring point-to-point operations.

Another optimization possible for the implementation of the
persistent collectives is to create them once at initialization,
and retrieve them in the subsequent MPI_Start calls. Mor-
gan et al. states that such a transformation is difficult to per-
form in libNBC, thus also in libPNBC, as “’that requires inva-
sive code-changes to the whole scheduling storage/usage code”.
However, in MPC, such rewriting of the schedules and rounds
management was already performed in the integrated version
of 1ibNBC to avoid heavy allocating costs. Hence, it is now
possible to implement this additional optimization. This new
caching optimization will be referred in Section 5 as "Request
caching”. We argue that this implementation further demon-
strates the possibility of persistent collectives, and shows the
potential speed-up libPNBC could reach if applying this new
caching level.

Initialization. For this new optimization, after creating the
schedule structure, it is parsed a first time to be filled. The algo-
rithm chosen for the collective determines the point-to-point op-
erations and rounds necessary to perform the operation. These
operations and rounds are then created, and used to fill in the
schedule structure. By doing so, we save the cost of recreat-
ing and inserting those internal structures for each MPI_Start
call. As the schedule is already embedded in the MPI_Request
object associated with the persistent operation, the correspond-
ing MPI_Start call will be able to retrieve all these information
and perform the operation.

It is possible that a persistent operation is initialized but never
used, or the operation might be performed for the first time long
after it was initialized. We decided to to create and embed such
structures in the MPI_Request object during initialization to
avoid unnecessary allocations, memory consumption and de-
pleting available internal structures.

Start. At the first call to MPI_Start after the initialization of
the persistent collective, the internal requests for the interme-
diate point-to-point operations are created round after round
during the progress, as with nonblocking operations. These
internal requests are kept and cached inside the encompassing
MPI_Request object. For the other calls to MPI_Start, for the
same persistent operation, the parsing of the schedule do not
create internal requests anymore. Instead the point-to-point in-
termediate requests are retrieved and reinitialized to be able to
perform again the same operation.

Due to this recurring behavior, the operations associated with
these internal requests can be seen as internal persistent point-
to-point requests.

Completion. At the end of each operation, the internal requests
are not released anymore. The first time a persistent collective
operation is performed, the associated request handle is tagged
to indicate that the internal requests for the intermediate point-
to-point operations have been built and can be retrieved when
starting again this operation.

Freeing. The MPI_Request object and all intermediate struc-
tures are released upon freeing. These intermediate struc-
tures include the schedule structure, along with the rounds,
intermediate point-to-point operations and their associated in-
ternal requests. As described in the MPI standard, only re-
quests marked as inactive should be released by a call to the
MPI_Request_free procedure.

5. Persistent collective experimental results

We evaluate our persistent collective implementations, study-
ing the impact of both caching optimizations compared to the
naive implementation. We first detail the experimental setup,
before detailing the results.

5.1. Test description

To measure the raw performance of each version, the mi-
crobenchmark consists in a for loop with 500 iterations on
which the start and the completion of the collectives are called
at each iteration, as shown in Listing 2. We measure the time of
the whole loop. Each microbenchmark executed 20 times, and
we present the median value of these 20 runs.

We run our tests on Intel KNL nodes with 64 cores (2 nodes
available in the test machine), and Intel Sandy Bridge nodes
composed of two 8-core sockets for a total of 16 cores per nodes
(8 nodes available on the test machine).

To make our comparisons of the different implementations,
we firstly vary the number of MPI processes and communicate
one byte at each collective call. We run the benchmark in full
MPI mode, with one MPI process per core. Hence, for 128 MPI
processes, the test spans over 2 KNL nodes and 8 Sandy bridge
nodes.

Secondly we study the impact of the size of the arguments
buffer passed to the collectives on our implementations. We
compare the timing on the slower MPI process for each collec-
tive, performing a max-reduce on the timing of all MPI pro-
cesses.

We chose to present results for 4 collectives extensively used
in HPC simulations: MPI_Bcast, MPI_Reduce, MPI_Alleduce
and MPI_Alltoall, and only for the Intel Sandy Bridge ma-
chine which provides more nodes. More collective results are
available in our EuroMPI 2020 paper [6], with additional col-
lectives on the Intel Sandy Bridge machine, and all collectives
on the Intel KNL machine.

Performance of the naive implementation. We also imple-
mented the microbenchmark with nonblocking calls, as shown
in Listing 1. We compared the nonblocking case to our naive
persistent implementation, and both provided similar results for
all tested collectives. The figures for these results are also avail-
able in our EuroMPI 2020 paper [6].

5.2. Naive persistent vs optimizations

Once we checked that our naive persistent implementations
are as performant as the nonblocking procedures, we measure
the effect of our optimizations on performances.

‘We compare the naive version to the first ”Schedule caching”
optimization, caching only the schedule structure creation as in
libPNBC, and to the combination of both ’Schedule caching”
and “Request caching”, the caching of the schedule structures
along with the caching of internal structures (such as rounds and
internal requests). Since the naive version performance is sim-
ilar to the use of nonblocking procedures, any speedup brought
by these optimizations advocates for the benefit of (correctly
implemented) persistent collectives over nonblocking collec-
tives.

5.2.1. Number of rank variation

We first display these results on the four chosen collectives,
with a count argument of 1 integer (4 bytes), for a various num-
ber of MPI processes. The results are shown in Figure 1.

4.000 0.250

0.125
0.062

Alltoall Allreduce
7

1.000 g

0.250
0.031

0.016
0.008
0.004

0.062

0.016

Execution time(s) log2
Execution time(s) log2

0.004
0.002
2 4 8 16 32 64 128 2 4 8 16 32 64 128

Number of MPI processes
Naive implementation —+—
Schedule Caching —»—
Schedule Caching + Request Caching

Number of MPI processes
Naive implementation ——
Schedule Caching —»—
Schedule Caching + Request Caching

Bcast A

0.062 Reduce

log2

0.016
0.031
0.008 0.016

0.008

Execution time(s) log2
Execution time(s)

0.004
0.004

0.002 0.002
2 4 8 16 32 64 128 2 4 8 16 32 64 128

Number of MPI processes
Naive implementation ——
Schedule Caching —»—
Schedule Caching + Request Caching

Number of MPI processes
Naive implementation —+—
Schedule Caching —w—
Schedule Caching + Request Caching

Figure 1: Naive persistent implementation vs optimizations on Intel Sandy
Bridge nodes, varying MPI process numbers with a fixed buffer size of 1 in-
teger (4 bytes)

In all cases, the first optimization (labeled “’schedule” with
the purple line) provides an improvement over the naive ver-
sion (in blue). The second optimizations (labeled ’schedule +
request”) provides an increased speedup compared to the first
optimization.

On the other hand, the more the number of MPI processes
is important, the less optimizations improvement are notice-
able. With a large number of MPI processes, and especially
once internode communications begin to appear (over 16 MPI
processes on Intel Sandy bridge nodes), the benchmark per-
formance is more and more driven by the communications in-
volved to complete the collective, and less by the building or
management costs of internal structures. Since the caching op-
timization only reduces the overhead on the initialization phase,
once the time of the initialization phase becomes negligible
compared to the communication time, performance speedup
disappears.

The best results are obtained on the reduce collective, with
up to a factor of three speedup when performing the collective
operation inside a full node (e.g, 16 MPI processes on one In-
tel Sandy Bridge node). This collective is implemented with a
binomial tree. For this algorithm, the critical MPI process is
the root, with the greater number of operations to perform of
all MPI processes involved in the collective. With such algo-
rithms, most of the intermediate point-to-point operations are
performed in parallel, leading to a lesser impact of the com-
munication time, and a greater impact of the initialization and
creation costs part. Since these costs are the ones reduced by
our caching optimizations, it makes sense that this collective
shows the best impact. Bcast and Gather follow the same type
of algorithm, but display lesser improvement.

We implemented allreduce, allgather, and reduce_scatter (and
there derivatives) as a combination of previous communication
patterns (resp. reduce + bcast, gather + bcast and reduce + scat-
ter). Allreduce displays the best speedup of these collectives as
it is the combination of two tree algorithms.

For the last collective presented here, alltoall, a lot of com-
munications happen simultaneously, but the critical number of
operations is greater than the reduce collective. This mitigates
the impact of our caching optimizations.

On all of our test, the scatter collective provides the worst
performance. In our implementation, its tree shape is differ-
ent from Bcast and Gather collectives, which impacts the local-
ity of the data exchanges, hence increasing the average weight
of these communications. Thus the impact of the initialization
costs, and of our optimizations, is reduced. The complete set of
figures can be found in the EuroMPI 2020 paper [6].

5.2.2. Buffer size variation

So far, we tested the collectives for a fixed number of ele-
ments to communicate of 1 integer (4 bytes). To be thorough,
we also run the benchmark with various buffer sizes. As we saw
on the previous Section that internode communications quickly
negates the visible effect of the caching optimizations, we de-
cided to test multiple buffer sizes only in intranode context,
hence 16 MPI processes on one Intel Sandy Bridge. The re-
sults are displayed in Figure 2.

For most collectives, the combination of the two caching lev-
els brings the best performances. This speedup can be seen un-
til the message size is very large (around 2'6 bytes). With large
messages, the creation and initialization costs become negligi-
ble compare to the communication time. Thus, the performance
gain brought by the optimizations is not visible anymore.

Two collectives display different behaviors: alltoall and, in a
lesser extent, allgather. For these collectives, the communica-
tion time greatly increases with message sizes above 32 bytes.
Because of this, the initialization speedup is reduced, though
the alltoall still displays a x1.5 speedup with this reduction.

6. Hardware topological split semantics

The MPI standard has always avoided to make specific ref-
erence to the underlying hardware, and especially to the topol-

2.000
o 1.000 o {
® 0500 Alltoall 8 1.000 Allreduce / J
@ @ 0.500 A
£ 0250 p 2 o250 /
g o= J—-—'—’/ o e 5 oms 4
= i’ = 0.062
3 0.062 1 / 3
L)E L;u.z 0.031
0.031 0.016 {
0.016 0.008
22 24 26 25 210 212 214 216 218 22 24 25 28 210 212 214 216 215 220
Buffer size (byte) Buffer size (byte)
Naive implementation —— Naive implementation ——
Schedule Caching —w— Schedule Caching —»—
Schedule Caching + Request Caching Schedule Caching + Request Caching
4.000 A
® 0125 Beast VAl S Reduce A
= 2 1.000 Az
% 0062 /o = p /
T Iy
£ o031 / £ 0280 7/
5 5 /
S 0016 5 0062
3 3
3 3
I 0.008 § 5 o016 |
0.004 0.004

22 24 96 8 10 512 914 516 518 520 22 24 26 28 10 512 514 516 518 20
Buffer size (byte)
Naive implementation ——
Schedule Caching —w—
Schedule Caching + Request Caching

Buffer size (byte)
Naive implementation —+—
Schedule Caching —»—
Schedule Caching + Request Caching

Figure 2: Naive persistent implementation vs optimizations on one Intel Sandy
Bridge nodes, varying buffer sizes with a fixed number of 16 MPI processes
(intranode)

ogy. The reason for that was to remain generic and avoid addi-
tional burden for the implementations. Even in the latest stan-
dard version 3.1, the only reference to hardware topology re-
lates to MPI processes topologies. A user can create a virtual
topology for the MPI processes. This topology, attached to a
communicator, describes how MPI processes will communi-
cates with each other (MPI process neighborhood), through a
multi-dimensional grid or an adjacency graph. Attaching a vir-
tual topology creates a new communicator, in which the user
can ask that the MPI processes ranks will be reordered “’possi-
bly so as to choose a good embedding of the virtual topology
onto the physical machine” (MPI standard 3.1, p.292, 1.37-38).

Howeyver, as we have shown in Section 2, numerous work re-
lated to MPI improvements, specifically for collective commu-
nications, focus on hierarchical algorithm to better match the
hardware topology. If such optimization can be performed in-
ternally by MPI implementation for the collectives pattern de-
fined in the MPI standard, users wanting to design their own
communication pattern with topology-awareness had to rely on
external tool to gather topology information. For this reason,
the new MPI standard version 4.0 provides a way to get topo-
logical communicators through specific communicator splitting

types.

6.1. Hardware topological split interface

In the MPI standard, communications between MPI pro-
cesses occur inside a communicator. One can think of a com-
municator as a set of ordered MPI processes (each MPI process
as unique id, its rank, only valid in the associated communica-
tor) with a communication context. Different communications
happening on different communicators should not interfere with
each other a they are in distinct contexts.

One of the procedures proposed in the MPI standard to cre-
ate new communicators is MPI_Comm_split_type (MPI_Comm
comm, int split_type, int key, MPI_Info info,
MPI_Comm *newcomm). It allows to split a communicator

not on a specific color value, but according to higher-level
description represented by the split_type argument, op-
tionally accompanied by the info argument if necessary.
This higher-level description defines which MPI processes
should be grouped together in the new communicator. In
MPI standard 3.1, only one split_type value is defined:
MPI_COMM_TYPE_SHARED. Using this split_type value, a user
should end up with communicator grouping together MPI
processes able to create a common shared memory segment
(e.g., through the use of the MPT _Win_allocate_shared).

In the new MPI standard 4.0, two new split_type
values are defined: MPI_COMM_TYPE_HW_UNGUIDED and
MPI_COMM_TYPE_HW_GUIDED. These two split_type values aim
at creating communicators related to the hardware topology.

6.2. Unguided

The goal of the unguided split type value is to cre-
ate topological communicators without any knowledge from
the user about the topology levels available. When used
with the MPI_COMM_TYPE_HW_UNGUIDED split type value, the
MPI_Comm_split_type procedure should evaluate at which
topology level the input communicator corresponds, and return
new communicators corresponding to a lower topology level.
Saying that a communicator corresponds to a topology level
means that every MPI process in the communicator can utilize
the specific hardware resource type instance at this level, and
that they cannot utilize another instance of this hardware re-
source type. For example, a communicator corresponds to L2
cache topology level if all MPI processes in the communicator
have cpusets, hence are linked to compute resources, ensuring
that they will always use the same specific L2 cache, and no
other L2 cache on the compute node.

The unguided split type value follows two rules to create the
new topological communicators:

e the new communicators shall always correspond to a
topology level strictly lower (i.e., closer to the CPUs) than
the original communicator, and,

e the new communicators cardinality shall always be lower
than the original communicator (i.e., less MPI processes
in the new communicators than in the original one).

These two rules ensure that a user will not create several iden-
tical communicators through the unguided interface. If such
criteria cannot be met, then MPI_COMM_NULL is returned. Note
that MPT_COMM_NULL can be returned for some of the MPI pro-
cesses in the original communicator, while a subgroup of MPI
processes can effectively meet the requirements and get valid
non-null communicator in newcomm.

A user can create communicators for each level of his hard-
ware topology by calling the MPI_Comm_split_type proce-
dure recursively, with MPI_COMM_TYPE_HW_UNGUIDED as split
type value and using the output communicator newcomm as
the input communicator for the next split. Doing so, starting
with MPI_COMM_WORLD, the procedure will first produce com-
municators corresponding to the first level of the underlying

topology. Then a new call will produce communicators cor-
responding to the next level in the topology, with strict sub-
sets of the input communicator. Then it will continue until fi-
nally reaching a communicator similar to MPT_COMM_SELF, then
MPI_COMM_NULL. Note that the MPI standard does not enforce
that an MPI implementation has to support the whole topology
hierarchy. It is perfectly valid for an MPI implementation to
directly return a communicator similar to MPT_COMM_SELF or
MPI_COMM_NULL when splitting MPT_COMM_WORLD.

6.2.1. Guided

The goal of the guided split type value it to create topo-
logical communicators, with the user specifying to which
level the produced communicators should correspond. When
used with the MPTI_COMM_TYPE_HW_GUIDED split type value, the
MPI_Comm_split_type procedure info argument should also
be specified. The mpi_hw_resource_type info key is reserved
in the MPI standard for this specific use. Its only value ex-
plicitly specified is mpi_shared memory; it is defined to pro-
vide a similar behavior than when using the already existing
MPI_COMM_TYPE_SHARED split type value.

If no mpi_hw_resource_type info key is specified, or its
value is not supported by the MPI implementation, the proce-
dure will return MPI_COMM_NULL. If the provided info key value
is supported, the procedure will create communicators group-
ing the maximum subset of MPI processes fitting the criteria.
It means that if a user requires a guided split at L3 cache level
(level supported by the MPI implementation) and 6 MPI pro-
cesses utilize the same L3 cache, the procedure has to return one
communicator grouping these 6 MPI processes. It cannot pro-
duce multiple communicators containing only a subset of these
MPI processes (e.g., 2 communicators of 3 MPI processes).

7. Hardware topological split implementation

We implemented the new hardware topology split interface
in the MPC framework.

Though it is correct for an MPI implementation to directly re-
turn MPI_COMM_SELF or MPI_COMM_NULL when hardware topol-
ogy split is asked, we decided to support multiple intranode
topology levels. We base our possible topology levels on the
ones detected and returned by Hwloc. The supported levels
in MPC, i.e., values accepted for the mpi_hw_resource_type
info key, are: ”Node”, "NUMA node”, “Package” (similar
to sockets in a compute node), ”L3 cache”, "L2 cache”, L1
cache”, and ’Core”.

7.1. Guided implementation

MPC implementation of the MPI_Comm_split_type pro-
cedure internally uses the MPI_Comm_split procedure.
MPI_Comm_split takes a color argument, and the MPI pro-
cesses with the same color value are part of the same out-
put sub-communicator. So, when the Guided mode is used, the
MPC runtime needs to compute a specific color for each hard-
ware object corresponding to the required level. This color is
then given to MPI_Comm_split.

In MPC, the topology objects provided by Hwloc have been
extended to abstract the whole compute node, even with mul-
tiple OS processes. Inside a compute node, MPC has a unique
id for each element of a topological level. Le., if there are four
L3 caches on a compute node, they will be internally numbered
from O to 3. Moreover, each compute node involved in a multi-
node MPC program also has a unique id. IL.e. if the computation
spans on P nodes, they will be numbered from O to P-1.

Thanks to this internal representation, it is straightforward to
compute a unique color for any topological level element. If the
asked level for the communicator splitting is ”’Node” (i.e., com-
pute node), the node unique id in MPC is used as color value.
If the asked level is below the node level (e.g., L2 cache), the
unique node id is concatenated to each element unique id in the
node, thus giving a unique color value for each element at the
desired level. To find the correct resource id, each MPI process
first retrieves its current location, and the Processing Unit (PU)
id associated with its location. Then, the runtime evaluates the
type of all the PU ancestors in the topology, until finding a type
matching the value passed to mpi_hw_resource_type.

7.2. Unguided implementation

The Unguided mode consists in two steps: 1) finding which
level is the next one in the topology then, 2) using the Guided
mode implementation by providing the found level as the asked
level for splitting.

Two cases arise when searching which is the next level to
split. In the first case, the input communicator to split spans
over multiple nodes. Since the compute node level is the highest
level supported in MPC, if multiple nodes are involved, then
the splitting will always target the "Node” level. This check is
easily done inside the runtime.

In the second case, the input communicator includes MPI
processes already belonging to the same node. It is then nec-
essary to find the correct split level inside the node. One MPI
process in the input communicator is elected, then computes
pairwise its closest ancestor with every other MPI process of
the input communicator. This search is similar to the method
to find a resource id in the Guided mode. For each pair, the
two MPI processes find their hardware location (PU), then go
up their ancestor tree in the topology, until reaching a common
ancestor. Once each pair is done, the common ancestor with
the highest hierarchical level designates the hierarchy level that
spans over all the concerned MPI processes. For example, con-
sider that the elected MPI process shares the L2 cache with a
second MPI process, and only the L3 cache with the other MPI
processes. L3 cache is higher in the topology hierarchy, and,
in most of nowadays processor architecture, spans over the L2
cache associated with the elected MPI process. Thus the L3
cache also spans over the second MPI process (sharing the same
L2 cache as the elected process, hence the L3 cache is the clos-
est common ancestor for the entire group of MPI processes in
the input communicator.

Once the global closest common ancestor is found, then the
level just below is the topology level we will use to create the
new communicators. This level is then given to the Guided
mode implementation to produce the expected communicators.

8. Building topological communicators with the new API

As we presented, a lot of collective performance improve-
ment relates to topological algorithms. Since the MPI stan-
dard didn’t provide any mechanisms to detect the underlying
topology, users wanted to elaborate topological communication
schemes had to rely on external tools (such as inserting Hwloc
calls directly in their code).

The advent of hardware topology splitting in MPI offers a
standard way to better map a communication pattern to the
hardware topology.

8.1. Building a hierarchy of communicators

With the new interface, building a set of hierarchi-
cal communicators is quite easy. Recursively calling
MPI_Comm_split_type, with MPI_COMM_WORLD as input to
the first call, then using the generated new communicators
newcomnm as the input communicator for the subsequent calls,
will produce on the local MPI process a communicator for each
supported level in the topology. The actual snippet of code is
presented in Listing 3.

Listing 3: Unguided hierarchical communicators creation

hwcomm[level_num] = comm_collective;
MPI_Comm_rank (comm_collective, &rank_comm);

/* create topological communicators */
int level_num = 0;

while ((hwcomm[level_num]
&% level_num < level)

{

res =

!'= MPI_COMM_NULL)

MPI_Comm_split_type (hwcomm[level_num],
MPI_COMM_TYPE_HW_UNGUidED,
vrank,

MPI_INFO_NULL,
&hwcomm [level_num+1]);
level _num++;

}

LI T Y

10
11
12
13

After executing this code, the user ends up with hierarchi-
cal communicators. However, it is not yet possible to do a
topological broadcast for example. If we have two hierarchi-
cal communicators at the "NUMA node” level, we can realize
a broadcast inside each NUMA node using the corresponding
communicator. But if the user need to broadcast a value to all
MPI processes on the two NUMA nodes, then a communicator
grouping all MPI processes should be used. This higher-level
communicator only sees a group of MPI processes. If the broad-
cast is done in this communicator, the algorithm used may be
oblivious of the topology.

What a user would want is actually for a unique MPI process
of each NUMA node to handle this part of the broadcast. It will
allow for a two-step topological algorithm: first inter-NUMA
node communications between such local conduits, then intra-
NUMA node communications.

8.2. Building condutts communicator

Once all hierarchical communicators are done, creating such
conduits communicator is rather easy. Listing 4 displays a snip-
pet of code for this purpose.

Listing 4: Unguided conduits communicators creation for different hardware
topology levels

int level_num = 0;
while ((hwcomm[level_num + 1] !'= MPI_COMM_NULL))
{
MPI_Comm_rank (hwcomm[level_num+1], &rank_comm);
if (rank_comm == 0)
color = 0;
else
color = MPI_UNDEFINED;

MPI_Comm_split (hwcomm[level_num], color,
vrank, &conduitcomm[level_num]);
level _num++;

To create a conduits communicator for a given level, an MPI
process should be elected as conduit on each communicator
corresponding to this level. To this end, we will use the com-
municator of the above level. Indeed, only communicators at a
higher level in the hierarchy will see all the MPI processes that
will end up in this conduits communicator. We will split such
communicator to have one communicator with only the elected
MPI processes. The splitting occurs following a given value,
i.e., all MPI processes with the same color will be grouped.
Thus, to have a conduits communicator, one only has to give
the same color value to the elected MPI processes on each
sub-communicator. In Listing 4, all the MPI processes with
rank O in the sub-communicator have been elected. All sub-
communicators have their own numbering, starting from 0 to
the size of the MPI processed group: we are sure there is only
on MPI process with rank 0 in each sub-communicator. All the
MPI processes with rank 0 are given the same color value (0 in
the example), while all other MPI processes will use the value
MPI_UNDEFINED. After splitting the higher-level communicator
with such colors, we obtain our conduits communicator. The
usage of MPI_UNDEFINED ensured that no other useless commu-
nicators will be created with the splitting call. Choosing rank
0 as the elected MPI process is similar to the implementation
of the MPI_Comm_hsplit_with_roots function in the original
MPI proposal [25]. However, another MPI process can be a bet-
ter choice. If an MPI process is closer to the network card than
the rank 0, then it could be of interest to choose this MPI pro-
cess as local conduit, as to avoid any additional latency when
using the network.

Creating such conduits communicator for each supported
level, we obtain a chain of conduits communicators to imple-
ment topological algorithms. Figure 3 presents a graphical rep-
resentation of such hierarchy of communicators. Consider the
supported hardware topology levels are "Node” and "NUMA
node”, for an initial MPI_COMM_WORLD grouping 18 MPI pro-
cesses. This initial communicator spans over 3 nodes, each
node composed of 2 NUMA-nodes, each NUMA-node hav-
ing 3 Processing units (cores). This hardware architecture is
depicted with light grey frames in Figure 3. Creating hier-
archical communicators from MPI_COMM_WORLD, we will have
first 3 communicators at node level, then 6 communicators at
NUMA-node level (2 communicators per node). These 6 com-

STEP 1

A

Top level master
communicator

NUMA-Node master
communicators

NUMA-node level
communicators

O = MPI process

B
)

Q = MPI communicator

= Underlying hardware topology

_ =~ 7 = = = communication step 1
S -
~-a = cOmMmMunication step 3

= communication step 2

Figure 3: Hierarchy of communicators mapping the underlying hardware. Arrows represent the communication pattern for a topological broadcast algorithm.

municators are depicted with 6 black ellipses at the bottom of
the figure, each spanning of 3 cores, and composed of 3 MPI
processes numbered from rank O to rank 2. To communicate be-
tween these 6 NUMA-node communicator, a NUMA-node con-
duits communicator is created per node. These conduits com-
municators group the elected MPI processes of each NUMA-
node communicator (MPI process with rank O in this exam-
ple) per node. Having 3 compute nodes, and 2 NUMA-nodes
per node, we end up with 3 NUMA-node conduits communica-
tors, grouping 2 MPI processes (one MPI process per NUMA-
node communicator). Then, it is necessary to build a top level
conduits communicator, grouping the elected MPI processes of
each NUMA-node conduits communicators. Having 3 compute
nodes, hence 3 NUMA-node conduits communicators, this top
level conduits communicator regroups 3 elected MPI processes.
Note that an MPI process belonging to multiple communicators
may have a different rank for each communicator. With such
hierarchy of topological and conduits communicators, one can
easily transfer data following the underlying hardware topol-
ogy, by using the right communicators in order.

8.3. Discussion on the new MPI 4.0 API

Though the proposed and voted API for the MPI 4.0 standard
allows creating topological communicators, additional features
can make it easier to use.

Procedure to query supported topology levels. As we de-
scribed in Section 6, the info key mpi_hw_resource_type is
defined and reserved to pass at which level the input communi-
cator should be split in Guided mode. However, the levels that
can be supported, i.e., the possible values for this info key, are
completely implementation defined. If such freedom is benefi-
cial for the MPI implementations, it is not user-friendly, as users
cannot rely on specific keywords or levels to build their com-
munication pattern. Worse, no procedure is provided to query
which levels are supported and could be given to the Guided
mode. Hence, to use this feature, as user needs to have in-depth
knowledge of the utilized MPI implementation to know which
levels are possible. Hopefully, such query functions are dis-
cussed and envisioned for version 4.1 of the MPI standard.

Creating conduits communicators. As we have seen earlier in
this Section, creating the conduits communicators to have a use-
ful hierarchy of communicators is straightforward, but cumber-
some. The user needs to split each hierarchical communicator

10

with colors related to the rank in the communicator of the previ-
ous topology level. If such splitting indeed creates the conduits
communicator for a specific level, it may also create a com-
municator with the complementary set of MPI processes, i.e.,
a communicator regrouping all the MPI processes not elected
as conduit in the previous level. It is the user’s responsibility
to directly delete this useless communicator. Otherwise, all the
complementary communicators will consume the MPI imple-
mentation resources, and could be impairing in the long run.
Using the MPI predefined value MPI_UNDEFINED will prevent
the creation of the complementary communicators.

To alleviate this burden from the user’s shoulders and avoid
the iterative process to create each conduits communicators, a
new procedure could be proposed. Taking in input a commu-
nicator, the number of levels the use wants in its hierarchy of
communicators, and the list of levels to consider, this procedure
could return an array of communicators containing directly the
conduits communicators and the lower-level hierarchical com-
municator corresponding to the input parameters for each call-
ing process. An info key could drive the selection of the elected
MPI process from each communicator level (e.g., MPI process
with rank O in each communicator, ...).

9. Collective algorithms using hierarchical communicators

In this section, we present how collective pattern can be build
from the hierarchical communicators. We focus on broadcast,
gather and reduce collective patterns. In the presented algo-
rithm, we make two assumptions: 1) an MPI process elected as
conduit in a conduits communicator will also be the conduit in
lower conduits communicators and, 2) the root MPI process in
a collective is always elected as conduit. These two assump-
tions avoid extra communications (if the root process is not a
conduit, then a extra step is necessary to either send the data
from the conduit to the root, or from the root to the conduit,
depending on the communication pattern).

9.1. Broadcast pattern with hierarchical communicators.

The broadcast collective pattern is very simple. In input, the
root MPI process has data, and after the broadcast is executed,
all other MPI processes should also have the same data in their
respective output buffer.

We design our algorithm for the broadcast collective pattern
using hierarchical communicators as follows:

- The root, as local conduit, sends the data to all elected
MPI processes of the top conduits communicator (hence to the
elected MPI processes of all compute nodes).

- Now each conduits in the top conduits communicator has the
data. They propagate the data to the other MPI processes they
are grouped with the communicator corresponding to the next
level in the topology. If the next level is also a conduits commu-
nicator, the algorithm iterates over this step until reaching the
bottom of the communicator hierarchy.

- Once the data has reached the lower topological communica-
tor, the data is broadcast to all local MPI processes, using the
elected MPI process at the last hierarchical level as the local
root.

In this algorithm, each step realizes an internal broadcast per
hierarchical communicators. This internal broadcast can be im-
plemented with any classical algorithm, such as linear of bino-
mial tree.

9.2. Gather pattern with hierarchical communicators.

The gather collective pattern concatenates data from all MPI
processes in the output buffer of the root MPI process.

the algorithm for the gather collective pattern is basically the
reverse of the broadcast algorithm:

- First, a local gather is done in the lowest communicators. For
each such communicator, the MPI process elected as conduit
for the directly above conduits communicator in the topology
serves as root.

- Once the local concatenation is finished, another round of
gather is done on the directly following conduits communica-
tors, and so on until reaching the topmost conduits communica-
tor.

- In the topmost conduits communicator, a last local gather is
done with the root of the whole gather operation as local root.

In the gather operation, the concatenation is done in order
with respect to MPI process rank numbering in the input com-
municator. This can cause some overhead using hierarchical
communicators if the ranks are not correctly ordered with re-
spect to the hardware topology.

Figure 4 displays two use cases. In the first case (subfigure
(a) on the left), MPI processes are numbered in a contiguous
way. Thanks to this numbering, the local gathers at each step
already concatenate the data (red squares labelled from ~a” to
”1”) at their rightful place in the output buffer. In the second
case (subfigure (b) on the right), MPI processes are numbered
in a more random way. This can be the result of a new num-
bering associated with a virtual topology, or creation of new
communicators from merging sparse communicators. It causes
the local concatenated buffer to be shuffled compared to the po-
sition each data should have in the final buffer. To have the cor-
rect output buffer at the end of the operation, it is then necessary
to provide data-ownership information. In the displayed algo-
rithm, the rank id associated with each buffer is also gathered
at each step (green squares containing the rank id). All rank
ids are propagated up to the root on the topmost communicator.
Once the root stores locally all data and the associated own-
ership information, it sorts the buffer to produce the expected
result.

11

It is possible to reduce the size of the ownership information
which must be transmitted at each step. A first possibility would
be to sort the concatenated buffer at each step. This way, if
enough buffers are already at the right position next to each
other, their position information can be packed, thus reducing
the amount of meta-data to send.

Another way to avoid sending ownership information is to
rely on the persistent mechanism. The initialization call for
persistent collectives is non-local. Thus, it is possible to ex-
change data during the initialization step. By gathering in the
initialization call the position of all MPI processes involved in
the operation, the root MPI process can store locally how the
data will be concatenated. The sorting pattern can then be pre-
pared during initialization. When the gather operation will be
performed (between MPI_Start and the associated completion
calls), no meta-data information would need to transit with the
actual data.

9.3. Reduce pattern with hierarchical communicators.

The reduce collective pattern is very similar to the gather col-
lective pattern, excepting that is applies an operator on all MPI
processes data instead of just concatenating them in the output
buffer. However, the ordering of the data may not be as im-
portant as for the gather operation. If the operator used in the
reduce operation is a commutative operator, then the data can
be associated in any order. As such it is possible to use an algo-
rithm which is the reverse of the broadcast algorithm.

This is depicted in the left part of Figure 5:

- First, a local reduce is done in the lowest communicators. For
each such communicator, the MPI process elected as conduit
for the directly above conduits communicator in the topology
serves as root. This step is depicted in Figure 5 (a) with the
dashed-line arrows, marked “communication step 1”.

- Once the local reduction is finished, another round of reduce
is done on the directly following conduits communicators, and
so on until reaching the topmost conduits communicator. This
step is depicted in Figure 5 (a) with the dashed-and-dotted-line
arrows, marked “communication step 2”.

- In the topmost conduits communicator, a last local reduce is
done with the root of the whole reduction operation as local
root. Then, the root as the result of the whole reduction in its
output buffer. This step is depicted in Figure 5 (a) with the
dotted-line arrows, marked “communication step 3”.

However, if the operator used is not commutative, then the
operator should be applied on data in order with respect to the
rank numbering. For non-commutative operators, we realize a
gather operation (with the same root as the reduction), to obtain
the ordered data at the root. Once the root has all the data,
it can then apply the operator in order to produce the correct
result. This communication pattern is displayed in Figure 5 (b).

9.4. Other collective patterns

We also implemented other collective patterns, based on the
three patterns described in the Section. The gatherv operation
follows the same algorithm as the gather pattern. Allgather,

MPI MPI MPI

#6 #7 #8 #9 #10 #11

[a] = data buffer

Gather algorithms using hierarchical communicators

(a) Algorithm for contiguous rank numbering according to
the topology in the input communicator

(b) Algorithm for non-contiguous rank numbering
in the input communicator

[albI<[ale[FISTALTTIIKIT]

STEP 4 (sort according to Indices array)

[Tl T[cIfISIIIbIkIelnI0l8I3RI2]5

glel1fid4[7

s |
E D E @ @
MPI MPI MPI MPI Pl MPI
#6 #9 #1 #10 #4 #7

MPI MPI
#0 #8 #3
root

[ol

MPI Pl MPI
#11 #2 #5

= additional buffer rank information

Figure 4: Algorithms for Gather collective using hierarchical communicators.

(a) Algorithm for commutative reduce operation
(predefined and user-defined)

MPI MPI MPI
#6 #9 #1

MPI MPI MPI
#10 #4 #7

&

= data buffer

Reduce algorithms using hierarchical communicators

(b) Algorithm for non-commutative user-defined
reduce operation

STEP 5 (apply reduce operation in order)
(a[b[cTd[e]fIOTh[iTiTk]T]
A STEP 4 (sort according to Indices array)
[BYITd[1Tc]fTolITblkIeln[0]8[3R12[5]¢IpI1Rd4[7]

(SR |y
O (>
MPI MPI MPI MPI MPI MPI
#6 #9 #1

#10 #4 #7

#11 #2

#5

= additional buffer rank information

ol

Figure 5: Algorithms for Reduce collective using hierarchical communicators.

allgatherv and allreduce operations are implemented as a com-
bination of gather or reduce operation followed by a broadcast
operation, choosing arbitrarily an MPI process as root. Scatter
and alltoall operations (along with their derived operations) are
currently being designed. We did not consider Scan and Exscan
operations so far.

10. Evaluating simple topological algorithm

In this Section, we evaluate the simple algorithms proposed
in Section 9. The purpose of these tests is to see if using the new
MPI topological splitting MPI allows reaching the performance
of algorithms implemented in MPI libraries.

We tested two configurations of hierarchical communicators
for our hierarchical collectives. The first configuration has
only one level of hierarchical communicators at compute node
level, with one conduits communicator at the top and topolog-
ical communicators at the bottom. The second configuration
adds a second communicator splitting at the NUMA node level.
This second configuration is the one represented in Figure 3.
As both configurations present similar performance, we will
present only results for 1-level splitting.

For each tested collective, the implementation build the com-
plete hierarchy of communicators (including conduits commu-
nicators) during initialization. The reduce algorithm is im-
plemented using the gather algorithm (as displayed in Fig-
ure 5 (b)). For the gather and reduce algorithms, the position
of each buffer is collected at initialization to avoid sending ad-
ditional meta-data during the actual execution of the collective.

12

Tests are performed with the same configurations described
in Section 5. Each test executes the collective (MPI_Start +
MPI_Wait) 500 times, with only one initialization and one free-
ing call. The time of the longest iteration is captured. We real-
ize 20 runs for every test, and display the median time of these
20 runs. The experiments were executed on an Intel Sandy
Bridge platform, with up to ten nodes.

For each tested persistent collective with MPC, we also mea-
sure the corresponding nonblocking collective with OpenMPI
4.0.5 (the more recent version installed in our test machine).

10.1. default vs topological communicators

We compare MPC default algorithm (binomial tree for all
tested persistent collectives) to the simple algorithms based on
the topological communicators. Figure 6 displays results for
gather, reduce, broadcast and allreduce persistent collectives
execution, for 1 to 10 nodes filled with MPI processes. The de-
fault algorithm is displayed with red curves, while the topology-
aware implementation is displayed with green curves. For each
algorithm, we test two configurations: ordered ranking (plain
lines), and unordered ranking (dotted lines, with ”& shuffle” la-
bel). The unordered ranking follows a scatter policy. The same
“unordering” is applied for all collective test.

For all collectives, we can see that the topological algorithms
display similar performances then the binomial algorithm, for
an ordered numbering of the MPI processes. However, for the
unordered ranking, the binomial algorithm does not perform
well. We observe a slowdown of a factor five on broadcast,

and a factor of nine on allreduce. On the other hand, the topo-
logical algorithms offer the same performance level for ordered
and unordered rank numbering.

gather reduce

300*10°6 300*10°6

_ *10°6 |- il
250410 |- R 25010 -
- E
200%10°® - ’ q
200710 |- ! o) x|
= x| 2 150%10° - !
2 150110° - 1 E X P4
E 7 100710°6 x 4
*10°6 L il
100*10 50410 | %\'/\V/V |
504106 g ook e L
. 16 32 48 64 80 96 112128144160
oo T L 1 1
16 32 48 64 80 96 112128144160 Number of MPI pracesses
Number of MPI processes default & rank shuffle -
default —v— topo comms Ivi1
default & rank shuffle - topo comms IvI1 & rank shuffle
topo comms IvI1 ompi nbc
topo comms IvI1 & rank shuffle ompi nbc & rank shuffle
beast allreduce
12010 T 450*106 ——— T
< 400710 |-
100*10°®
e 350+10° -
_. 80%10° |- X _. 300*10° -
@ @
o) O 6 |
S 6010 X T 250"10
E E 200*10° -
[" X = " /
40710 X 150%10°6 Xof
X 100*10°6 |-
20%10°® %X Y o
o= 504100 - L g
oo L 0*100 =T A A A A N

16 32 48 64 80 96 112128144160

Number of MPI processes
default —v—
default & rank shuffle -
topo comms Ivi1
topo comms IvI1 & rank shuffle
ompi nbc
ompi nbc & rank shuffle

16 32 48 64 80 96 112128144160

Number of MPI processes
default —v—
default & rank shuffle -
topo comms Ivi1
topo comms IvI1 & rank shuffle
ompi nbc
ompi nbc & rank shuffle

Figure 6: Naive topological implementation vs default algorithm and default
OpenMPI nonblocking algorithm, on Intel Sandy Bridge nodes, varying MPI
process numbers with a fixed buffer size of 1 integer (4 bytes)

10.2. topological communicators vs default OpenMPI

We also compared our simple persistent topological algo-
rithms to OpenMPI executions using the nonblocking counter-
part procedure. The OpenMPI results are displayed with grey
lines, and using the same convention for ordered ranking (plain
lines) and unordered ranking (dotted lines).

For the gather operation, OpenMPI was greatly slower than
MPC, flattening all the other curves in the graph. We chose
to not display these results, as it allows keeping the differ-
ence of behavior between the MPC default algorithm and the
topological algorithm. For the other displayed collective, the
nonblocking default algorithms from OpenMPI offers the same
performance for ordered and unordered rank numbering, and
is slightly slower that the simple topological algorithms. Our
topological gather performs worse than the default behavior be-
cause of the time spent in the re-ordering at the last level. This
sort is implemented with a very basic algorithm, not scalable.
The increasing overhead is due to the increasing number of MPI
processes, and thus the increasing number of data to sort. We
aim to replace it with a scalable sorting algorithm in the future.
The topological reduce follows the same trend, as it has been
implemented following the gather algorithm.

Trying to have fair comparison, we also tested the binomial
algorithm for the broadcast collective thanks to the MCA en-
vironment variables proposed by OpenMPI, with the same re-

13

sults. Finally, we tested the blocking versions of these collec-
tives with OpenMPI. The results were also very stable, for both
ordered and unordered ranking, but with better performances
than the nonblocking version, allowing it to be faster than our
topological algorithm.

Nonetheless, these results show that simple algorithms de-
signed using the hierarchical communicators compete with al-
gorithms used in production MPI libraries. Of course, it is still
better for a user to utilize the collective algorithms provided by
the MPI implementations if its communication pattern fits. But,
if the user needs to design a new complex collective commu-
nication pattern, the topology-awareness provided by the new
API can help design a scalable and efficient implementation,
even with unordered rank numbering.

11. Conclusion and future work

Persistent collectives procedures and communicator topolog-
ical splitting are new features available in the latest MPI stan-
dard. In this paper, we present our implementation of both fea-
tures in the MPC framework. We first detailed naive implemen-
tation for the persistent collectives, then two caching optimiza-
tions bringing better performances (mainly in intranode). Then,
we described our support of the new communicator splitting in-
terface, with the list of hardware topology levels recognized in
our implementation.

We took advantage of the persistent semantics to design sim-
ple topology-aware algorithms for broadcast, gather and reduce
operations, thanks to the new communicator splitting interface.
After describing a methodology to build a hierarchy of com-
municators and master communicators allowing easy topologi-
cal communication pattern, we used this methodology to build
said communicators, and the associated communication pat-
tern, during the persistent initialization call. The induced over-
head can then be hidden by the time gained during executions
of the persistent collective.

We compared the performance of these new topology-aware
persistent broadcast algorithms against our previous binomial
persistent implementations. The topology-aware algorithms
show similar performance than binomial algorithms for ordered
MPI processes rank numbering, but show its benefit with un-
ordered ranking, providing the same performances whereas the
binomial algorithms performances dropped. We also compared
our simple algorithms to OpenMPI blocking and nonblocking
counterparts operations. Results show that these simple algo-
rithms build from the hierarchical communicators compete with
algorithms implemented in production MPI library.

We argue that it advocates for simpler collective pattern im-
plementations for MPI users, it the pattern they need is not pro-
vided by MPIL. Implementing such pattern using persistent se-
mantics allows grouping the cost of hierarchical communicators
creation in the initialization phases, which can be hidden thanks
to a repetitive call to the more efficient communication pattern.

We discussed the new API for communicator topology split-
ting, exposing some lacks in the current proposal. We aim to
prototype and propose additions to this API to facilitate the cre-
ation of conduits communicators So far, the algorithms based

on the hierarchy of communicators are available only for per-
sistent collective in MPC, due to the high cost of generating said
hierarchy of communicators. However, these algorithms could
also be beneficial for blocking and nonblocking collective. We
aim at creating a caching system to register a created hierarchy
of communicators to the input communicator of persistent col-
lectives. This way, if the same communicator is later used for
a blocking or a nonblocking collective operation, this operation
can benefit from the attached hierarchy of communicators and
directly used the corresponding topology-aware algorithm.

Acknowledgments:. This work was performed under the Ex-
ascale Computing Research collaboration, with the support of
CEA and UVSQ; it has received funding from the European
Unions Horizon 2020/EuroHPC research and innovation pro-
gramme under grant agreement No 955606 (DEEP-SEA).

References
[1] M. Forum, MPI: A message-passing interface standard, version 1.1
(1994).
M. Forum, MPI: A message-passing interface standard, version 3.0
(2012).
B. Morgan, D. J. Holmes, A. Skjellum, P. Bangalore, S. Sridharan, Plan-
ning for performance: Persistent collective operations for MPI, in: Pro-
ceedings of the 24th European MPI Users’ Group Meeting, EuroMPI 17,
ACM, New York, NY, USA, 2017. doi:10.1145/3127024.3127028.
A. Skjellum, High performance MPI: Extending the message passing in-
terface for higher performance and higher predictability, in: International
Conference on Parallel and Distributed Processing Techniques and Appli-
cations, PDPTA’98, 1998, pp. 25-32.
F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, R. Namyst, hwloc: A generic framework for
managing hardware affinities in HPC applications, in: 2010 18th Euromi-
cro Conference on Parallel, Distributed and Network-based Processing,
2010, pp. 180-186. doi:10.1109/PDP.2010.67.
S. Bouhrour, J. Jaeger, Implementation and performance evaluation of
MPI persistent collectives in MPC: a case study, in: W. Bland, K. Mohror,
T. Pena (Eds.), EuroMPI/USA °20: 27th European MPI Users’ Group
Meeting, Virtual Meeting, Austin, TX, USA, September 21-24, 2020,
ACM, 2020, pp. 51-60. doi:10.1145/3416315.3416321.
M. Pérache, P. Carribault, H. Jourdren, MPC-MPI: An MPI implemen-
tation reducing the overall memory consumption, in: Proceedings of the
16th European PVM/MPI Users’ Group Meeting (EuroPVM/MPI 2009),
Vol. 5759 of Lecture Notes in Computer Science, Springer Berlin Heidel-
berg, 2009, pp. 94-103. doi:10.1007/978-3-642-03770-2_16.
M. Ruefenacht, M. Bull, S. Booth, Generalisation of recursive doubling
for allreduce: Now with simulation, Parallel Computing 69 (2017) 24 —
44. doi:https://doi.org/10.1016/j.parco.2017.08.004.
K. Hasanov, A. Lastovetsky, Hierarchical redesign of classic MPI reduc-
tion algorithms, The Journal of Supercomputing 73 (2) (2017) 713-725.
Q. Kang, J. Triff, R. Al-Bahrani, A. Agrawal, A. Choudhary, W.-k. Liao,
Scalable algorithms for mpi intergroup allgather and allgatherv, Parallel
Computing 85 (2019) 220-230. doi:10.1016/j.parco.2019.04.015.
P. Sanders, J. L. Triff, The hierarchical factor algorithm for all-to-all com-
munication, in: Euro-Par 2002 Parallel Processing, Springer Berlin Hei-
delberg, pp. 799-803.
J. Tréft, Hierarchical gather/scatter algorithms with graceful degradation,
in: 18th International Parallel and Distributed Processing Symposium,
2004. Proceedings., pp. 80-90. doi:10.1109/IPDPS.2004.1303019.
J. L. Tréff, Efficient allgather for regular smp-clusters, in: Recent
Advances in Parallel Virtual Machine and Message Passing Interface,
Springer Berlin Heidelberg, 2006, pp. 58-65.
J. Traff, Smp-aware message passing programming, in: Proceedings
International Parallel and Distributed Processing Symposium, 2003.
doi:10.1109/IPDPS.2003.1213253.

(2]
[3]

[4]

[3]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

14

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

N. Karonis, B. de Supinski, I. Foster, W. Gropp, E. Lusk, J. Bresna-
han, Exploiting hierarchy in parallel computer networks to optimize col-
lective operation performance, in: Proceedings 14th International Paral-
lel and Distributed Processing Symposium. IPDPS 2000, pp. 377-384.
doi:10.1109/IPDPS.2000.846009.

N. T. Karonis, B. Toonen, I. Foster, Mpich-g2: A grid-enabled imple-
mentation of the message passing interface, J. Parallel Distrib. Comput.
63 (2003) 551-563. doi:10.1016/S0743-7315(03)00002-9.

J. L. Traff, A. Ripke, An optimal broadcast algorithm adapted to SMP
clusters, in: B. D. Martino, D. Kranzlmiiller, J. J. Dongarra (Eds.), Re-
cent Advances in Parallel Virtual Machine and Message Passing Interface,
12th European PVM/MPI Users’ Group Meeting, Sorrento, Italy, Septem-
ber 18-21, 2005, Proceedings, Vol. 3666 of Lecture Notes in Computer
Science, Springer, 2005, pp. 48-56. doi:10.1007/11557265-11.

S. Pickartz, C. Clauss, S. Lankes, A. Monti, Enabling hierarchy-aware
MPI collectives in dynamically changing topologies, in: Proceedings of
the 24th European MPI Users’ Group Meeting, EuroMPI ’17, ACM, New
York, NY, USA, 2017. doi:10.1145/3127024.3127031.

T. Ma, G. Bosilca, A. Bouteiller, J. J. Dongarra, Kernel-assisted and
topology-aware MPI collective communications on multicore/many-core
platforms, Journal of Parallel and Distributed Computing 73 (7) (2013)
1000-1010. doi:10.1016/j.jpdc.2013.01.015.

Y. Tsujita, A. Hori, T. Kameyama, A. Uno, F. Shoji, Y. Ishikawa, Im-
proving collective MPI-io using topology-aware stepwise data aggrega-
tion with i/o throttling, in: Proceedings of the International Conference
on High Performance Computing in Asia-Pacific Region, HPC Asia 2018,
ACM, New York, NY, USA, 2018, pp. 12-23.

A. Jocksch, N. Ohana, E. Lanti, V. Karakasis, L. Villard, Towards an
optimal allreduce communication in message-passing systems, in: Eu-
roMPI/USA, 2020.

A. Bienz, L. Olson, W. Gropp, Node-aware improvements to allreduce,
in: 2019 IEEE/ACM Workshop on Exascale MPI (ExaMPI), 2019, pp.
19-28. doi:10.1109/ExaMPI149596.2019.00008.

B. Gerofi, R. Riesen, Y. Ishikawa, Making the case for portable MPI pro-
cess pinning, EuroMPI ’18 posters, 2018.

E. A. Leén, Mpibind: A memory-centric affinity algorithm for hybrid
applications, in: Proceedings of the International Symposium on Memory
Systems, MEMSYS ’17, ACM, New York, NY, USA, 2017, pp. 262-264.
doi:10.1145/3132402.3132415.

B. Goglin, E. Jeannot, F. Mansouri, G. Mercier, Hardware topology man-
agement in MPI applications through hierarchical communicators, Paral-
lel Computing 76 (2018) 70 — 90. doi:10.1016/j.parco.2018.05.006.

T. Hoefler, T. Schneider, Optimization principles for collective neighbor-
hood communications, 2012, pp. 98:1-98:10. doi:10.1109/SC.2012.86.
J. Larsson Triff, A. Carpen-Amarie, S. Hunold, A. Rougier, Message-
Combining Algorithms for Isomorphic, Sparse Collective Communica-
tion, 2016.

J. L. Traff, A. Rougier, S. Hunold, Implementing a classic: Zero-copy
all-to-all communication with mpi datatypes, in: Proceedings of the 28th
ACM International Conference on Supercomputing, ICS’14, ACM, New
York, NY, USA, 2014, pp. 135-144. doi:10.1145/2597652.2597662.

J. L. Traff, S. Hunold, Cartesian collective communication, in: Proceed-
ings of the 48th International Conference on Parallel Processing, ICPP
2019, ACM, New York, NY, USA, 2019. doi:10.1145/3337821.3337848.
M. Hatanaka, A. Hori, Y. Ishikawa, Optimization of MPI persistent com-
munication, in: Proceedings of the 20th European MPI Users’ Group
Meeting, EuroMPI *13, ACM, New York, NY, USA, 2013, pp. 79-84.
doi:10.1145/2488551.2488566.

M. Hatanaka, M. Takagi, A. Hori, Y. Ishikawa, Offloaded MPI persistent
collectives using persistent generalized request interface, in: Proceedings
of the 24th European MPI Users’ Group Meeting, EuroMPI ’17, ACM,
New York, NY, USA, 2017. doi:10.1145/3127024.3127029.

T. Hoefler, A. Lumsdaine, Design, Implementation, and Usage of
LibNBC, School of Informatics, 2006.

M. Tchiboukdjian, P. Carribault, M. Perache, Hierarchical local storage:
Exploiting flexible user-data sharing between MPI tasks, in: Parallel Dis-
tributed Processing Symposium (IPDPS), 2012 IEEE 26th International,
pp. 366-377. doi:10.1109/IPDPS.2012.42.

