
Enhancing Load-Balancing of MPI Applications
with Workshare

Thomas Dionisi1, Stephane Bouhrour1, Julien Jaeger1,2,3, Patrick
Carribault2,3, and Marc Pérache2,3

1 Exascale Computing Research Laboratory, 2 rue de la piquetterie,
Bruyères-le-châtel, 91680, France

2 CEA, DAM, DIF, F-91297, Arpajon, France
3 Université Paris-Saclay, CEA, Laboratoire en Informatique Haute Performance

pour le Calcul et la simulation, Bruyères-le-châtel, 91680, France

Abstract. Some high-performance parallel applications (e.g., simula-
tion codes) are, by nature, prone to computational imbalance. With var-
ious elements, such as particles or multiple materials, evolving in a fixed
space (with different boundary conditions), an MPI process can easily
end up with more operations to perform than its neighbors. This com-
putational imbalance causes performance loss. Load-balancing methods
are used to limit such negative impacts. However, most load-balancing
schemes rely on shared-memory models, and those handling MPI load-
balancing use too much heavy machinery for efficient intra-node load-
balancing. In this paper, we present the MPI Workshare concept. With
MPI Workshare, we propose a programming interface based on direc-
tives, and the associated implementation, to leverage light MPI intra-
node load-balancing. In this work, we focus on loop worksharing. The
similarity of our directives with OpenMP ones makes our interface easy
to understand and to use. We provide an implementation of both the
runtime and compiler directive support. Experimental results on well-
known mini-applications (MiniFE, LULESH) show that MPI Workshare
succeeds in maintaining the same level of performance as well-balanced
workloads even with high imbalance parameter values.

1 Introduction

The ever-growing need for computational power by simulation programs led to
larger and more complex supercomputer architectures. Simulating natural phe-
nomena can be complex and their evolving natures may lead to imbalanced
workloads during execution. For example, considering a set of particles in a
3D space, they will be spread across all computing workers. If the initial dis-
tribution of the particles favored similar workloads on all computing workers,
the balance may shift once the particles move through the 3D space and lead to
some computing workers having to deal with more particles than their neighbors.
Such workload imbalance causes performance loss. To circumvent this problem,
different work balancing methods emerged, mainly relying on shared-memory ca-
pabilities. If mixing MPI with a shared-memory programming model (MPI+X)

is now common, hence providing a favorable ground for load-balancing, such
hybrid programming is not always ideal regarding performances. First, runtime
stacking, i.e., having the runtimes for each programming model running at the
same time, is a challenge. Each runtime, often developed as if it will be the only
runtime running with the application, might make decisions that would hurt
the performance of the other running runtime. Second, the load-balancing will
only happen within the scope of the shared-memory models. This means that
even if multiple MPI processes are on the same node, no computational load-
balancing will ever happen. MPI load-balancing has been proposed in the past,
where message passing concepts are frequently used to support both inter-node
and intra-node load balancing. Although this methodology is necessary for inter-
node, using a distributed-memory mechanism can be heavy to handle intra-node
load-balancing.

This paper exposes the MPI Workshare concept, which aims at providing
the simplicity of OpenMP worksharing constructs to the MPI scope. We pro-
pose a set of directives, inspired by OpenMP, with a work stealing runtime
system to provide shared-memory load-balancing to legacy MPI codes. Using
pragmas similar to those of OpenMP, we ensure an easy-to-adopt interface for
users, with a minimal impact on the program. In this first implementation, we
focus on loop worksharing. The contributions of this paper are: 1) the presen-
tation of the MPI Workshare concept, 2) the definition of the MPI Workshare
programming interface, easy-to-adopt and leveraging incremental evolution of
MPI (and MPI+OpenMP) codes to include MPI shared-memory constructs, 3)
an implementation of directive compiler support and MPI Workshare runtime
for loop worksharing, and 4) performance evaluations of MPI load-balancing on
intra-node and inter-node benchmarks (pure MPI and MPI+OpenMP).

The paper is organized as follows. Section 2 documents related work to high-
light the lack of efficient intra-node MPI load-balancing. The MPI Workshare
concept is presented in Section 3, along with details on the loop workshare fo-
cus, and definition of the MPI Workshare interface. Section 4 focuses on the
runtime and implementation details. Then experimental results are displayed in
Section 5, before concluding in Section 6.

2 Related Work

Work-sharing concepts have long been studied in HPC. The first version of the
OpenMP standard exposes such constructs through the pragma omp for and
pragma omp sections directives. The loop worksharing construct distributes
the associated loop iterations to all OpenMP threads, either statically or dy-
namically. Thus OpenMP have seen numerous work trying to improve the bal-
ance of its worksharing. [5] introduced a novel loop scheduling option, named
adaptive. The scheduling strategy is based on the static scheduler by creating a
per-worker queue. They enable a work stealing scheduler between the workers
to dynamically balance the work along the execution when a thread becomes
idle. Contrary to [18] where the number of stolen tasks is statically defined, a

worker is allowed to steal the half of its victim’s queue. In [19], the authors
show that a state-of-the art runtime loop schedule is not efficient enough, and a
mixed-approach with polyhedral compiler analysis driving the runtime decision
can leverage much better performances. Recently, [2] exposes the state of the
art of OpenMP loop scheduling and argues for the need of more scheduling poli-
cies. The introduction of tasking in the OpenMP standard led to studies aiming
to improve the scheduling of numerous task [3, 11, 12, 20]. These studies mainly
advocates for local work-stealing to avoid extra costs.

Work sharing principles have already been integrated in some MPI applica-
tions. Most of these studies rely on an MPI+X approach, with the load-balancing
enabled for intra-node only through a thread-based programming model [16].
Few studies looked at real MPI load-balancing. In [15], authors use a Divide-
and-Conquer algorithm based on MPI dynamic processes to improve perfor-
mance of an N-Queens problem. FLEX-MPI [9] provides a whole library on top
of MPICH-2, to dynamically evaluate the load imbalance with hardware counters
and online MPI profiling, and redistributes the data through communications.
However, the user needs to register all data use in the computation for the run-
time to automatically load-balance the work, which is very cumbersome and can
induce some overheads. A more recent approach uses fine grain integration of
tasking with MPI [8], using Task-Aware MPI [17]. If this work allows to have
better scheduling of task including MPI communications, and tasks depending
on these communications, the load-balancing is still confined to the scope of one
MPI process. Most papers really targeting MPI load-balancing rely on message
passing to exchange redistributed data. Though it is mandatory for inter-node
load balancing, intra-node load balancing can be lighter by relying on shared-
memory principles directly in the MPI runtime.

For several years, Partitioned Global Address Space (PGAS) programming
models extend the shared memory paradigm across a whole cluster. This uni-
fied view of the memory allows embedding load-balancing concepts more easily
in their runtimes. The authors of [4] implements an optimized (lock queue re-
duction, stealing more than one tasks at a time, . . .) work stealing scheduler
thanks to the PGAS ARMCI, able to scale on a large distributed system. The
HabaneroUPC++ [7, 6] PGAS model focus on work stealing scheduler thanks to
the concatenation of the Habanero task programming model and the UPC++
PGAS tool. In [10], the authors introduce a dynamic tasking library for UPC,
with a new Hierarchical Victim Selection (HVS) method to preserve locality.
The main problem of PGAS models is the necessity to rewrite the program with
their semantics.

Intra-node inter-process load-balancing is either too code intrusive with PGAS,
or too heavy-weight with regular MPI load-balancing. However, a recent work
presents simple intra-node communication load-balancing [13]. So why the same
kind of concept is not also applied to intra-node computation load-balancing?
Our MPI Workshare concept aims at leveraging the simplicity and efficiency of
OpenMP worksharing, but between MPI processes on the same node. The pro-
posed programming interface inspired by OpenMP ensures a quick understand-

ing of its use, and limits the efforts and impacts on the source code, compared
to a PGAS oriented rewrite. As we focus on intra-node MPI load-balancing, this
work is complementary to all inter-node load-balancing schemes, and also with
shared-memory model load-balancing such as OpenMP worksharing constructs.

3 MPI Workshare

MPI Workshare offers worksharing features to MPI, to leverage some load bal-
ancing in one of the most used parallel programming API. This section first
presents the general idea of MPI Workshare, before describing our loop work-
share implementation and the proposed interface.

3.1 MPI Workshare Concept

MPI Workshare exposes to users a way to enable inter-MPI process load-balancing
on some specific parts of the program. Thus it is composed of two parts:

1. a programming interface allowing users to identify the parts of the local work
that will be exposed to other MPI processes, and

2. a runtime implementation handling these parts and leveraging a stealing
mechanism between MPI processes.

Marking the code parts that will be exposed to other MPI processes is left
to the user. To ease the adoption of our MPI Workshare interface, this step
requires to be the less invasive possible in the code, and easy to grasp and
to use. To this end, we propose a programming interface inspired by OpenMP
and its worksharing mechanism. The code selection for MPI Workshare is done
through pragmas, with a set #pragma ws directives inspired from OpenMP ones.
These directives are detailed in Section 3.2. Based on these directives, the MPI
Workshare runtime will transform the selected work into subtasks that can be
executed by other MPI processes.

The second part is the work stealing mechanism, and when to actually steal
work from another MPI process. In an MPI program, most performance loss
comes from the synchronization induced by the MPI communications. Stealing
work means that the local MPI process will have to check is there is some work to
steal from another MPI process. This verification induces communications, hence
synchronization, which can be harmful to the global performances. To avoid
adding extra synchronization, probing for work to steal is done only when the
local MPI process is already in a waiting state due to the MPI semantics. Instead
of just waiting for the pending communications, the MPI runtime activates the
MPI Workshare runtime to check if it can help any busy MPI process. With this
behavior, the original semantics of the MPI process is kept, and no additional
synchronizations are inserted due to the MPI Workshare.

Loop workshare. In this work, we limit the scope of the MPI Workshare approach
to for loops. The method used for the MPI Workshare on loops is very similar
to the one used in OpenMP for the loop workshare constructs (e.g., #pragma
omp for directive). Thus the loop iterations are decomposed into chunks. One
major difference with the OpenMP construct is that these chunks are not initially
spread onto the available MPI processes. Each MPI process is still in charge of
executing its own loop, as expected from a usual MPI program. However, these
chunks are exposed to the other MPI processes for workshare. If another MPI
process finishes its work and ends up in a waiting state, it can steal available
chunks. Figure 1 displays this behavior with 3 MPI processes located on the
same node. Rank 0 has no loop, whereas ranks 1 and 2 have each one for loop,
symbolized with the plain lines. Rank 1 has less iterations than rank 2. All MPI
processes synchronize through an MPI call, represented with the dotted lines.
With no workshare (left frame), rank 0 just waits for rank 1 and rank 2 to finish
their work. Rank 2 has the heavier load, and delays the completion time of all
ranks. Thanks to workshare (right frame), rank 0 starts to look for chunks to
steal as soon as it enters the synchronizing call. It first steals rank 1, helping to
finish its local work sooner. Then, both ranks are in the synchronizing call, and
they both steal chunks from rank 2. Thanks to the stealing, rank 2 finishes its
local work more quickly. It enters the synchronizing call earlier, thus ”freeing”
the other ranks from the synchronizing call earlier too.

WITHOUT
MPI WORKSHARE

MPI 1 MPI 2 Exposed list
of remaining

chunks

WITH
MPI WORKSHARE

MPI 1 MPI 2for loop
execution

MPI waiting time
(e.g., MPI_Allreduce,
MPI_Recv, ...)

Chunk of iterations
from MPI 1 loop

Chunk of iterations
from MPI 2 loop

MPI 0

look for chunkssteal chunk

MPI 0

Fig. 1: MPI Workshare mechanism on 3 MPI processes, 2 MPI processes having a for loop
with a #pragma ws for directive.

Like for OpenMP, it is possible as well to provide additional information
to influence the sizes and numbers of chunks. It is also possible to define the
equivalent of the guided and dynamic clauses of the #pragma omp for directive
to have different size of chunks for the same loop, to leverage finer load balancing.
All the new directives provided for MPI Workshare are detailed in the following
Section.

Workshare Workers for spare cores. In regular MPI+OpenMP programs, there
are less MPI processes than compute resources, as to leave compute resources
dedicated to the OpenMP threads that will be spawned during execution. When
MPI workshare is applied on a loop, it prevents OpenMP to be applied on
the same loop. This means: 1) iterations won’t be distributed among OpenMP
threads and will execute sequentially (from the OpenMP perspective) and, 2)
compute resources dedicated to OpenMP threads may remain idle as the corre-
sponding OpenMP threads won’t be awake. To avoid this, the MPI Workshare
spawns workers on the idle resources. Each MPI process has its own set of
workers on its local idle resources. Each worker helps performing local chunks
(current MPI process) and work stealing (remote MPI process). With this policy,
the workers behave for the local MPI processes in a fashion similar to OpenMP
threads with a #pragma omp for directive. It is possible for a compute resource
to host both an OpenMP thread and a workshare worker. However, they won’t
be active at the same time.

3.2 MPI Workshare Interface

The MPI Workshare interface is based on 3 directives, inspired by OpenMP
standard, that enable loop worksharing.

Directive #pragma ws for. The main directive is #pragma ws for.

#pragma ws for [clause[[,] clause] ...] new-line
loop-nest

where loop-nest is a canonical loop nest and clause is one of the following:

private(list)

firstprivate(list)

lastprivate([lastprivate-modifier:]list)

reduction([reduction-modifier,]reduction-identifier:list)

schedule([modifier [, modifier]:]kind[, chunk size])

collapse(n)

steal schedule([modifier [, modifier]:]kind[, chunk size])

This directive acts as the #pragma omp for in the OpenMP specification, but
in the MPI scope. This construct specifies that the iterations of the associated
loop/loopnest will be exposed to other MPI processes. Thus if an MPI process
is in a waiting phase and is allowed to steal work, it will be able to execute some
of the exposed iterations in parallel of the local MPI process. If multiple MPI
processes are in this position, then the iterations will be distributed across all
stealing MPI processes.

Both the schedule and steal schedule clauses specify how iterations of the
associated loop(s) are divided into chunks, and how these chunks are distributed

among the MPI processes. The schedule clause drives the chunk choice only
on the local MPI process. The steal schedule clause specifies how other MPI
processes will steal loop iterations. Both of these clauses accepts the same values
as the schedule clause in the OpenMP specification: static, dynamic or guided.

All other clauses that can be passed to the #pragma ws for directive are
similar to those of the #pragma omp for construct in the OpenMP specification.
For example, it is possible to include a reduction operation in the scope of the
#pragma ws for directive through the use of reduction clause with the right
operator and the final variable.

Directive #pragma ws atomic. As the reduction clause cannot cover all the
reducing operations that can happen in a loop body, the OpenMP specification
offers the possibility to specify atomic instructions through the #pragma omp

atomic construct. To offer the same level of expressiveness, we also provide the
directive #pragma ws atomic.

#pragma ws atomic [clause[[,] clause] ...] new-line
statement

For this directive, the clauses, and according statements, supported are the
same as for the #pragma omp atomic in the OpenMP specification. The behavior
is also similar, as it ensures that the specified storage location is atomically
updated, to avoid race conditions due to concurrent accesses of multiple MPI
processes.

Directive #pragma ws critical. The #pragma ws critical is a generaliza-
tion of the #pragma ws atomic. The construct applies on a scope defined with
a structured block.

#pragma ws critical [(name)] new-line
structured-block

This construct ensures that the code in the scope will be executed only by
one MPI process at a time. The accepted clauses are similar to the ones accepted
by the #pragma omp critical in the OpenMP specification.

4 Implementation

We implemented MPI Workshare into the MPC runtime [14]. MPC provides
both an OpenMP and an MPI implementation, with the MPI runtime having
both process-based and thread-based flavors. In the latter, all MPI processes in
a node are in fact threads in one encompassing OS process. In this mode, the
MPI Workshare runtime in MPC is very similar to the OpenMP runtime. Inside
a node, all MPI processes are threads able to access the same memory space.
An MPI Workshare structure is created for each MPI process. To help other

MPI ranks, an MPI process iterates on the MPI Workshare structure of each
other MPI process until finding one with unfinished exposed work. Such work is
symbolized by a shared index inside the MPI Workshare structure with a value
between the lower and upper bound of the shared loop. To steal a chunk, the
MPI process has to get the current iteration chunk index, and update its value to
the next chunk. Thus this MPI process will be in charge of performing the loop
iterations in the selected chunk. These three operations are performed atomically
with a compare and swap operation. State-of-the-art stealing optimizations have
been implemented (stealing from the end of the list) along with several victim
selection policies (MPI process with the most iterations remaining, or with less
thieves, or closest according to hardware topology). The whole stealing method
is realized with a lock-free implementation.

MPI calls in shared loops. It is possible that the loop tagged for workshare
contains MPI calls. Thus an MPI process stealing iterations should act as if
it was indeed the former MPI process performing the call. The MPC runtime
provides such features through the MPIX Disguise function [1]. It allows an MPI
process to temporarily assume the identity of another MPI process in the same
compute nodes. Thanks to this feature, our implementation enables workshare
even with MPI calls in the associated loop body.

However, we have the following restrictions for the moment. First, it is for-
bidden to access/modify the locations of data in the loop with RMA procedures.
Second, we apply the same restriction on the loop iterations than OpenMP: there
must be no semantic dependencies between iterations (either data dependencies,
or ordering dependencies such as with MPI collective initialization procedures).
The last restriction could be leveraged. OpenMP proposed the ordered directive
to enforce that part of the parallel loop should be executed in order according to
the iterations. As future plan, we envision to implement such ordered directive
for MPI Workshare. With such addition, it can then be possible to balance loops
containing MPI collective initialization procedures, as long as they are protected
with the ordered directive.

Compilation and OpenMP compatibility. Directives require compiler sup-
port to translate the MPI Workshare pragmas into the associated runtime calls.
We implement this translation into GCC 7.3.0 (the most-recent supported by
MPC at the time the work was performed) for C and C++, based on the ex-
isting OpenMP pass. We provide a new flag -fws, that enables MPI workshare
directives. It is possible to have both OpenMP and MPI workshare directives
in one program, and to use both -fws and -fopenmp flags. The runtimes are
compatible and can work concurrently. However it is not possible to have both
OpenMP and MPI workshare constructs on the same loop.

5 Experimental Results

To evaluate our MPI Workshare concept, we realized several experimentations on
a platform composed of dual-socket Intel Xeon Platinum 8168 (Skylake) nodes,
each with 24 cores at 2.7 GHz, equipped with Mellanox MT27700 (Connect-
IB) InfiniBand boards. Results are grouped into two categories: pure MPI runs,
and hybrid MPI+OpenMP executions. For pure MPI runs, workshare results
are produced without any workers, as all compute resources are populated with
MPI processes. For MPI+OpenMP runs, MPI Workshare spawns workers on
each compute resources originally used by OpenMP.

All results with MPI Workshare are realized using MPC 3.4.0. We compare
those results to both MPC 3.4.0 without activating MPI Workshare and openmpi
2.0.4. When OpenMP is involved, openmpi uses GCC 7.3.0 OpenMP runtime,
and MPC 3.4.0 without MPI Workshare uses its own OpenMP runtime relying
on GCC 7.3.0 for directive translation. For such tests, MPC 3.4.0 with MPI
Workshare replaces OpenMP loop pragmas with MPI Workshare pragmas, and
OpenMP threads are replaced with workshare workers.

5.1 Pure MPI benchmarks with MPI Workshare

Fig. 2: Timing of each MPI ranks on a microbenchmark with imbalanced workload (see
Listing 1.1) , without (openmpi, MPC) and with MPI Workshare. Left: 16 MPI processes on
a single node. Right: 16 MPI processes on 4 nodes (4 MPI processes per node).

Double-loop microbenchmark. Listing 1.1 shows an example of imbalanced
microbenchmark based on nested loops Iterations of the outer loop have mono-
tonically increasing workload. Thus, the iterations of this loop are distributed
across multiple MPI processes, to expose imbalanced workload across MPI.

Figure 2 (left) displays the execution time for 16 MPI processes located on the
same node. The first two bars are for openmpi and MPC runs without workshare.
The timings convey the monotonically increasing workload on each MPI process.

Fig. 3: MPI Workshare overhead evaluation on balanced workload, on a single node using
16 cores.

The last bar (blue) is for MPC with MPI Workshare. The timings reported are
for the local completion of the loop nest on each rank. The timing of the whole
benchmark is the same for each rank, and is similar to the local completion time
of the slowest rank, due to MPI Finalize synchronizing effect. As described in
Section 3.1, MPI Workshare runtime is active only when the MPI runtime is idle.
Thus, the MPI Workshare activates at the call to MPI Finalize after the loop
nest. The difference between the local timing and the global timing (local rank
vs slowest rank) is the time spent waiting in the MPI Finalize call, hence the
time the MPI process can help other MPI processes by stealing loop iterations.

Rank 0 is the rank with the least workload. It performs all its iterations
without help, hence its local completion time is the same with workshare (blue
bar) than without (purple and green bars). Once its work is done, it waits in
the barrier, and start looking for iterations to steal. Rank 1 is the first to be
stolen, with a local completion timing lower with workshare. One after another,
all waiting ranks start stealing the following MPI processes. Ultimately, rank 15,
which is the rank with the greater workload, reaches the barrier nearly twice as
fast as regular MPI execution, thanks to MPI Workshare.

Figure 2 (Left) is the best case for MPI Workshare, with all MPI processes
on the same compute node. Figure 2 (Right) displays the results of executing
the same benchmark on 4 nodes with 4 MPI processes per node. Once again,
MPI Workshare allows the blue bar to grow slower than usual MPI. This is
because MPI Workshare works only on intranode. Hence, workload is balanced
only between the 4 MPI processes on the same node.

Overhead study on balanced workload. Using the same microbenchmark
based on nested loops, we change the inner loop so each iteration will perform
the same computation as the other iterations, completely balancing the work-
load. We kept the same global number of iterations over all the MPI processes.
This configuration allows to evaluate the overhead of MPI Workshare on a bal-

anced workload. The results are displayed in Figure 3. We varied the size of the
chunk of iterations (1 meaning 1 iteration per chunk, 128 meaning 128 itera-
tions per chunk). As we can see, on a balanced workload, the performance using
MPI Workshare is very close to the pure MPI approach. The observed overhead
remains under 2% of the total execution time.

Lulesh and miniFE miniapps. Lulesh and miniFE (from the CORAL suite
on resp. hydrodynamic and finite elements) both offer a parameter to insert
workload imbalance between MPI processes. We ran Lulesh on an Intel KNL
processor because of Lulesh restrictions. Indeed, Lulesh can only run with a
number of MPI processes which is a cube. We opted for 64 MPI processes, and
the KNL architecture was the only one available to us which allowed to have all
64 MPI processes on the same node. MiniFE experimentations are performed
on the Skylake platform. Both experimentations display similar performances in
intra-node (Figure 4 for Lulesh and Figure 5 (Left) for miniFE). For openmpi or
standard MPC, the performance progressively drops when increasing the load
imbalance parameter. However, with MPI Workshare, the performance stays
constant regardless of the load imbalance.

MPI_Init();
...
#pragma ws loop
for i = MPIid*N/P to (MPIid+1)*N/P
{

for j = 0 to i
{

do_some_work();
}

}
...
MPI_Finalize();

Source Code 1.1: Imbalance loop work-
load on MPI processes

Fig. 4: Performance on Lulesh against the
load imbalance with size = 100 and 64 MPI
processes on KNL processors

Figure 5 (Right) displays miniFE behavior for varying number of nodes, with
a load imbalance parameter fixed to 500. We observe that MPI Workshare still
leverages better performance than usual MPC runs, though the speed-up being
less important with a greater number of nodes, due to the intra-node scope
limiting the workshare.

5.2 MPI+OpenMP benchmarks with MPI Workshare workers

We also evaluated MPI Workshare on MPI+OpenMP applications by replacing
some OpenMP loop directives by the Workshare counterpart. MPI Workshare

Fig. 5: Performance on miniFE with nx = ny = nz = 200 and 48 MPI processes per node
on Skylake processors. Left: results on one node, x-axis is the percentage of imbalance as
proposed by miniFE configuration. Right: results for varying number of nodes with a fixed
load-imbalance percentage of 500.

will spawn workers to populate the compute resources left vacant by the removed
OpenMP directive. Hence, in intra-node, all the 48 cores are always used with
a fitting combination of MPI processes with either OpenMP threads or workers
(e.g., 1 MPI process with 48 threads, or 8 MPI processes with 6 threads).

Fig. 6: Comparing MPI+OpenMP with MPI+MPI Workshare with workers. Second num-
ber of x-axis is number of OpenMP threads for openmpi and MPC, and number of MPI
Workshare workers for MPC+Workshare. Left: microbenchmark with imbalanced workload
(see Listing 1.1). Right: GAP Triangle Counting (TC) benchmark.

Double-loop and GAP Triangle Count microbenchmarks. We adapted
microbenchmark Listing 1.1 and the Triangle Count benchmark from GAP Suite
to run MPI+OpenMP tests. The Triangle Count benchmark is very highly im-
balanced parallelized with OpenMP, relying on dynamic scheduling to enable

load balancing. Since it does not use MPI, we did a basic MPI implementation
distributing the same number of iterations between the MPI processes (similar to
our double-loop benchmark). In our microbenchmark, we added OpenMP direc-
tives on the outer loop. Thus, for both benchmarks, when running with openmpi
and MPC, the loop is parallelized with OpenMP in each MPI process, and for
MPC with MPI Workshare, loop iterations are exposed to other MPI processes.
Both benchmarks display similar behaviors (see Figure 6). For 1 MPI process
on the node, results are similar. With both OpenMP and MPI Workshare, the
whole workload is balanced on the 48 availables cores. For more than 1 MPI
process per node, OpenMP cannot balance the whole workload, as its scope is
limited to intra-MPI process. With MPI Workshare, the whole workload con-
tinues to be perfectly balanced between all the workers of all MPI processes,
keeping the same performance for every configuration.

miniFE miniapp. Figure 7 (Left) exposes results running MPI+OpenMP ver-
sion of miniFE (MPI being either openmpi or MPC) compared to MPC+MPI
Workshare using workers with different combinations of MPI processes and
threads. Pure OpenMP executions of the miniapp showed that with a number
of threads higher than 8, OpenMP scalability is degrading and performances
collapse. This can be observed on the MPI+OpenMP version. Up to 4 MPI pro-
cesses, the number of OpenMP threads are higher than 8, and the performances
are driven by the OpenMP poor scalability. Hence, since performance issues do
not come from the MPI workload imbalance, MPI Workshare do not bring any
improvement. However, with more than 4 MPI processes, the OpenMP scala-
bility is good, and the performance is driven by the MPI imbalance. Thus, the
MPI Workshare brings better performance for such configurations.

Fig. 7: MiniFE performance with an imbalance of 500. Second number of x-axis is num-
ber of OpenMP threads for openmpi and MPC, and number of MPI Workshare work-
ers for MPC+Workshare. Left: varying the number of MPI processes, and accompanying
threads/workers, on one node. Right: varying number of nodes, fixed number 8 MPI ranks
with 6 threads/workers per node.

Figure 7 (Right) displays the internode performance with 8 MPI processes
and 6 OpenMP threads, or 6 workshare workers. For a large number of nodes,
the intra-node scope of MPI Workshare prevents it from having much benefit.
However, for a small number of nodes, MPI Workshare succeeds in improving
the performance.

6 Conclusion

MPI load-balancing can be critical to leverage good performance. Though most
load-balancing mechanism are available on intra-node for other programming
models, MPI load-balancing existing techniques rely on the heavy machinery
of message passing. In this paper, we presented the MPI Workshare concept,
offering the possibility to annotate an MPI program source code to allow inter-
MPI processes intra-node load-balancing. The proposed interface is inspired from
OpenMP directives to facilitate its adoption. We described our implementation
of MPI Workshare directives and runtime, targeting loop iteration worksharing.

We tested our implementation on several microbenchmarks and CORAL
miniapps. We showed that intra-node load-balancing is very efficient even with
heavy load imbalance for pure MPI runs. In inter-node, MPI Workshare also
provides speed-up, though it is inherently limited by its intra-node scope. With
MPI+OpenMP applications, the addition of workshare workers, to populate the
cores occupied by idle OpenMP threads, enables combining intra-MPI process
iterations distribution with inter-MPI process load-balancing.

The MPI Workshare concept shows promising results on the tested bench-
marks. However, our implementation only applies on regular loops, hence limit-
ing the scope in actual simulation programs. In future work, we aim to extend
MPI Workshare to other worksharing constructs inspired by OpenMP, such as
sections and tasks. These constructs would allow a user to apply MPI Work-
share load-balancing to independent parts of the code outside of regular for
loops, which is mandatory to be efficient on real-life applications.

Acknowledgments: This work was performed under the Exascale Computing
Research collaboration, with the support of CEA and UVSQ.

References

1. Besnard, J.B., Jaeger, J., Malony, A.D., Shende, S., Taboada, H., Pérache,
M., Carribault, P.: Mixing ranks, tasks, progress and nonblocking collec-
tives. In: Proceedings of the 26th European MPI Users’ Group Meeting. Eu-
roMPI ’19, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3343211.3343221

2. Ciorba, F.M., Iwainsky, C., Buder, P.: Openmp loop scheduling revisited: Making
a case for more schedules. In: de Supinski, B.R., Valero-Lara, P., Martorell, X.,
Mateo Bellido, S., Labarta, J. (eds.) Evolving OpenMP for Evolving Architectures.
pp. 21–36. Springer International Publishing, Cham (2018)

3. Clet-Ortega, J., Carribault, P., Pérache, M.: Evaluation of openmp task scheduling
algorithms for large numa architectures. In: Silva, F., Dutra, I., Santos Costa,
V. (eds.) Euro-Par 2014 Parallel Processing. pp. 596–607. Springer International
Publishing, Cham (2014)

4. Dinan, J., Larkins, D.B., Sadayappan, P., Krishnamoorthy, S., Nieplocha, J.:
Scalable work stealing. In: Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis. pp. 1–11 (Nov 2009).
https://doi.org/10.1145/1654059.1654113

5. Durand, M., Broquedis, F., Gautier, T., Raffin, B.: An Efficient OpenMP Loop
Scheduler for Irregular Applications on Large-Scale NUMA Machines. In: Ren-
dell, P., A., Chapman, M., B., Müller, S., M. (eds.) International Workshop on
OpenMP (IWOMP). OpenMP in the Era of Low Power Devices and Accelerators,
vol. 8122, pp. 141–155. Springer Berlin Heidelberg, Canberra, Australia (Sep 2013).
https://doi.org/10.1007/978-3-642-40698-0 11, https://hal.inria.fr/hal-00867438

6. Kumar, V., Murthy, K., Sarkar, V., Zheng, Y.: Optimized distributed work-
stealing. In: 2016 6th Workshop on Irregular Applications: Architecture and Algo-
rithms (IA3). pp. 74–77 (Nov 2016). https://doi.org/10.1109/IA3.2016.019

7. Kumar, V., Zheng, Y., Cavé, V., Budimlić, Z., Sarkar, V.: Habaneroupc++: A
compiler-free pgas library. In: Proceedings of the 8th International Conference on
Partitioned Global Address Space Programming Models. pp. 5:1–5:10. PGAS ’14,
ACM, New York, NY, USA (2014). https://doi.org/10.1145/2676870.2676879

8. Maroas, M., Teruel, X., Bull, J.M., Ayguad, E., Beltran, V.: Evaluat-
ing worksharing tasks on distributed environments. In: 2020 IEEE Inter-
national Conference on Cluster Computing (CLUSTER). pp. 69–80 (2020).
https://doi.org/10.1109/CLUSTER49012.2020.00017

9. Mart́ın, G., Marinescu, M.C., Singh, D.E., Carretero, J.: Flex-mpi: An mpi ex-
tension for supporting dynamic load balancing on heterogeneous non-dedicated
systems. In: Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013 Parallel Process-
ing. pp. 138–149. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

10. Min, S.J., Iancu, C., Yelick, K.: Hierarchical work stealing on manycore clusters.
In: 5th Conf. on Partitioned Global Address Space Prog. Models. p. 35 (2011)

11. Muddukrishna, A., Jonsson, P.A., Vlassov, V., Brorsson, M.: Locality-aware task
scheduling and data distribution on numa systems. In: Rendell, A.P., Chapman,
B.M., Müller, M.S. (eds.) OpenMP in the Era of Low Power Devices and Acceler-
ators. pp. 156–170. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

12. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Spiegel, M., Prins, J.F.: Openmp
task scheduling strategies for multicore numa systems. The International Jour-
nal of High Performance Computing Applications 26(2), 110–124 (2012).
https://doi.org/10.1177/1094342011434065

13. Ouyang, K., Si, M., Hori, A., Chen, Z., Balaji, P.: Cab-mpi: Exploring interprocess
work-stealing towards balanced mpi communication. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. SC ’20, IEEE Press (2020)

14. Pérache, M., Carribault, P., Jourdren, H.: Mpc-mpi: An mpi implementation re-
ducing the overall memory consumption. In: Ropo, M., Westerholm, J., Dongarra,
J. (eds.) Recent Advances in Parallel Virtual Machine and Message Passing Inter-
face. pp. 94–103. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

15. Pezzi, G.P., Cera, M.C., Mathias, E., Maillard, N., Navaux, P.O.A.: On-line
scheduling of mpi-2 programs with hierarchical work stealing. In: 19th International
Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD’07). pp. 247–254 (Oct 2007). https://doi.org/10.1109/SBAC-PAD.2007.36

16. Ravichandran, K., Lee, S., Pande, S.: Work stealing for multi-core hpc clusters. In:
Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011 Parallel Processing. pp.
205–217. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

17. Sala, K., Bellón, J., Farré, P., Teruel, X., Perez, J.M., Peña, A.J., Holmes,
D., Beltran, V., Labarta, J.: Improving the interoperability between mpi
and task-based programming models. In: Proceedings of the 25th European
MPI Users’ Group Meeting. EuroMPI’18, Association for Computing Ma-
chinery, New York, NY, USA (2018). https://doi.org/10.1145/3236367.3236382,
https://doi.org/10.1145/3236367.3236382

18. Subramaniam, S., Eager, D.L.: Affinity scheduling of unbalanced workloads.
In: Proceedings of the 1994 ACM/IEEE Conference on Supercomputing. pp.
214–226. IEEE Computer Society Press, Los Alamitos, CA, USA (1994),
http://dl.acm.org/citation.cfm?id=602770.602810

19. Thoman, P., Jordan, H., Pellegrini, S., Fahringer, T.: Automatic openmp loop
scheduling: A combined compiler and runtime approach. In: Chapman, B.M., Mas-
saioli, F., Müller, M.S., Rorro, M. (eds.) OpenMP in a Heterogeneous World. pp.
88–101. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

20. Virouleau, P., Broquedis, F., Gautier, T., Rastello, F.: Using data dependencies to
improve task-based scheduling strategies on numa architectures. In: Dutot, P.F.,
Trystram, D. (eds.) Euro-Par 2016: Parallel Processing. pp. 531–544. Springer In-
ternational Publishing, Cham (2016)

