
Correctness Analysis of MPI-3 Non-Blocking
Communications in PARCOACH

Julien Jaeger
CEA, DAM, DIF

F-91297 Arpajon, FRANCE
julien.jaeger@cea.fr

Emmanuelle Saillard
CEA, DAM, DIF

F-91297 Arpajon, FRANCE
emmanuelle.saillard.ocre@cea.fr

Patrick Carribault
CEA, DAM, DIF

F-91297 Arpajon, FRANCE
patrick.carribault@cea.fr

Denis Barthou
Bordeaux Institute of

Technology
LaBRI/INRIA

Bordeaux, FRANCE
denis.barthou@inria.fr

ABSTRACT
MPI-3 provide functions for non-blocking collectives. To
help programmers introduce non-blocking collectives to ex-
isting MPI programs, we improve the PARCOACH tool for
checking correctness of MPI call sequences. These enhance-
ments focus on correct call sequences of all flavor of collective
calls, and on the presence of completion calls for all non-
blocking communications. The evaluation shows an over-
head under 10% of original compilation time.

Keywords
MPI, Non-blocking collectives, checker, static analysis

1. INTRODUCTION
Most parallel scientific applications rely on the distributed-

memory specification called MPI (Message Passing Inter-
face) to efficiently exploit a supercomputer and reach high
parallel performance. This programming model proposes
point-to-point and collective communications to transfer mes-
sages between the different processes. Furthermore, the first
specification provides the notion of non-blocking point-to-
point communications.

Non-Blocking Point-To-Point Communications and
Completion Calls: Non-blocking point-to-point commu-
nication allows to overlap communication and computation
and thus to leverage hardware parallelism. Several stud-
ies [2] have shown that the performance of parallel applica-
tions can be significantly enhanced with overlapping tech-
niques. A call to a non-blocking point-to-point communi-
cation initiates an action without completing it. Another
function, called completion call is necessary to finish the ac-
tion. At the end of this completion call, the runtime ensures

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

EuroMPI ’15 September 21-23, 2015, Bordeaux , France
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3795-3/15/09.

DOI: http://dx.doi.org/10.1145/2802658.2802674

that it is safe for the application to reuse the communica-
tion buffers. One can distinguish two types of completion
calls: completion calls that complete only one non-blocking
operation (functions MPI_{Wait,Waitany,Test,Testany},
referred to as unitary completion call or ucc) and completion
calls checking in a list of operations all the ones that are done
(functions MPI_{Waitall,Waitsome,Testall,Testsome}, re-
ferred to as multi completion call or mcc).

Collective Communications: Collective communica-
tions are an important part of parallel scientific comput-
ing [1]. The non-blocking collectives provided in MPI-3
API combine the efficient algorithms of collectives opera-
tions with the overlapping benefits of non-blocking commu-
nications. The non-blocking collective model is similar to
the one proposed by non-blocking point-to-point communi-
cations. The main difference with point-to-point commu-
nications is that blocking collectives can not be matched
to their non-blocking counterparts. The ordering of collec-
tives between blocking and non-blocking collectives, and be-
tween non-blocking collectives, is very important. If one
process calls a non-blocking collective, the remaining pro-
cesses should also call the same function before initiating
any other collective.

In this paper, we introduce an evolution of the PAR-
COACH [3] tool with a new static analysis allowing to debug
MPI non-blocking call sequences.

2. ANALYSIS OF NON-BLOCKING COM-
MUNICATIONS

To tackle the issues pointed out in Section 1, we propose
two new analyses: (i) a new static pass to check if the num-
ber of completion calls may match non-blocking call (either
collective or point-to-point) and (ii) a static analysis to check
that the sequence of all flavor of collective is the same along
all possible execution paths. These analyses have been im-
plemented inside PARCOACH [3], a tool proposing a two-
phase analysis to detect incorrect collective patterns in MPI
programs. It combines a static analysis identifying the re-
duced set of problematic collectives with a selective instru-
mentation on the corresponding nodes in the Control Flow
Graph (CFG) of the function to handle the deadlocks.

Matching Non-blocking Communication with Com-
pletion Calls: With this new pass, we determine if each
non-blocking operation, either point-to-point or collective,
can be matched to a completion call. For a path to be
valid, each non-blocking operation should correspond to a
unitary completion call or to a multi completion call. The
exact matching would require to execute the code, checking
all arguments passing and memory movements. Statically,
we make the following assumption: a completion call al-
ways matches a previous pending non-blocking operation,
if any. Within this assumption and for each basic block of
the analyzed function, the number of pending non-blocking
communications (called pnb) is computed, using an interval
notation, following Algorithm 1. The lower bound (lb) corre-
sponds to the number of pending communications when mcc
statements complete all the previous non-blocking commu-
nications. The upper bound (ub) corresponds to the number
of pending communications case when mcc statements only
complete one of the previous non-blocking communication.
Given this approach, a function is incorrect (completion calls
missing) if the lower bound of the pnb for the function exit is
greater than 0. The function may be incorrect if the upper
bound of this pnb is greater than 0.

Algorithm 1 Evaluating the number of pending non-
blocking communications

1: function PNB bound(G = (V, E)) . G: CFG
2: Remove loop backedges in G
3: for n ∈ V , in topological order do
4: if n has no predecessor then pnbn ← [0, 0] . pnb:

interval of values [pnb.lb, pnb.ub]
5: else
6: pnbn ←

S
(p,n)∈E pnbp

7: end if
8: if non blocking operation ∈ n then
9: pnbn ← [pnbn.lb + 1, pnbn.ub + 1]

10: end if
11: if unitary completion call ∈ n then
12: pnbn ← [max(pnbn.lb− 1, 0), max(pnbn.ub− 1, 0)]
13: end if
14: if multi completion call ∈ n then
15: pnbn ← [0, max(pnbn.ub− 1, 0)]
16: end if
17: end for
18: Output pnb
19: end function

Extending PARCOACH with Non-Blocking Seman-
tics:

In Section 1, non-blocking collectives have been shown to
share the same constraint as blocking collectives when used
together. Once this behavior is identified, supporting non-
blocking collectives in the original analysis of PARCOACH is
straightforward: the syntactic parser of collective names has
to be enhanced with non-blocking ones. Since PARCOACH
uses the output list of this step to instrument the problem-
atic nodes, our enhancement will directly benefit from the
instrumentation. PARCOACH will then be able to insert
functions for runtime checking before all flavor of collectives,
including non-blocking ones.

3. RESULTS
We tested our two static analyses on the Intel MPI Bench-

marks version 4.0 (IMB) and a microbenchmarks suite of
unitary tests we created (NBC-bench). These results were

 0

 2

 4

 6

 8

 10

IMB NBC−Bench IMB NBC−Bench

O
ve

rh
ea

d
in

 %

without instrumentation
with instrumentation

PARCOACH extendedPARCOACH

Figure 1: Overhead of average compilation time
with and without verification code generation

computed and averaged with MPICH 3.1.4.
Figure 1 highlights the compilation-time overhead obtained

with and without static instrumentation (validation func-
tions insertions) on the two sets of benchmarks. For each
test, the overhead of the original PARCOACH analysis, for
blocking MPI collective calls, and our improved analysis,
checking both blocking and non-blocking MPI collective calls,
are provided. The black bars display the original overheads,
and the grey bars show the additional overhead created by
the addition of non-blocking collectives in the static analy-
sis. Our addition to the checking of collective only bring an
extra 1% to the overhead, which remains under 9% of the
total compilation time.

4. CONCLUSION
In this paper, we extended the static analysis of PAR-

COACH, originally designed for checking blocking collective
calls, to include non-blocking collectives. A second static
analysis was included to also check the completion of all
non-blocking communications issued in an MPI program.
The designed algorithms allow to find if non-blocking calls
are not completed in a function, and return the list of prob-
lematic nodes for issuing warnings to the developer. This
addition brought a small extra overhead compared to the
original analysis, and the complete compilation time with
the new analyses being less than 10% higher than initial
compilation time.

5. REFERENCES
[1] D. Dureau and G. Poëtte. Hybrid parallel programming

models for amr neutron monte-carlo transport. In
SNA+ MC 2013-Joint International Conference on
Supercomputing in Nuclear Applications+ Monte Carlo,
page 04202. EDP Sciences, 2014.

[2] T. Hoefler, P. Gottschling, A. Lumsdaine, and
W. Rehm. Optimizing a conjugate gradient solver with
non-blocking collective operations. Elsevier Journal of
Parallel Computing (PARCO), 33(9):624 – 633, 2007.
Selected Papers from EuroPVM/MPI 2006.

[3] E. Saillard, P. Carribault, and D. Barthou. Parcoach:
Combining static and dynamic validation of MPI
collective communications. Intl. Journal on High
Performance Computing Applications (IJHPCA),
28(4):425–434, 2014.

